Ganoderma bambusicola sp. nov. (Polyporales, Basidiomycota) from southern Asia

Phytotaxa ◽  
2020 ◽  
Vol 456 (1) ◽  
pp. 75-85
Author(s):  
SHENG-HUA WU ◽  
CHI-LIANG CHERN ◽  
CHIA-LING WEI ◽  
YU-PING CHEN ◽  
MITSUTERU AKIBA ◽  
...  

Ganoderma bambusicola sp. nov. is described and illustrated from tropical Taiwan; it is also found in Laos and Myamar. The species is recognized as new based on morphological study and phylogenetic analyses using three gene regions: ITS, rpb2 and tef1-α. Ganoderma bambusicola has been incorrectly identified as G. neojaponicum in Taiwan for several decades on account of it having a similar shiny dark reddish brown to purplish black pileus surface and a blackish long stipe, but it differs from the latter species in having a homogeneous pileal context. Ganoderma bambusicola is, to date, only known from southern Asia and grows on bamboo roots, while G. neojaponicum occurs on roots or trunks of conifers in Japan, China and Korea. These two species do not have a close relationship according to the present phylogenetic study.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Javier Fernández-López ◽  
M. Teresa Telleria ◽  
Margarita Dueñas ◽  
Mara Laguna-Castro ◽  
Klaus Schliep ◽  
...  

AbstractThe use of different sources of evidence has been recommended in order to conduct species delimitation analyses to solve taxonomic issues. In this study, we use a maximum likelihood framework to combine morphological and molecular traits to study the case of Xylodon australis (Hymenochaetales, Basidiomycota) using the locate.yeti function from the phytools R package. Xylodon australis has been considered a single species distributed across Australia, New Zealand and Patagonia. Multi-locus phylogenetic analyses were conducted to unmask the actual diversity under X. australis as well as the kinship relations respect their relatives. To assess the taxonomic position of each clade, locate.yeti function was used to locate in a molecular phylogeny the X. australis type material for which no molecular data was available using morphological continuous traits. Two different species were distinguished under the X. australis name, one from Australia–New Zealand and other from Patagonia. In addition, a close relationship with Xylodon lenis, a species from the South East of Asia, was confirmed for the Patagonian clade. We discuss the implications of our results for the biogeographical history of this genus and we evaluate the potential of this method to be used with historical collections for which molecular data is not available.


Phytotaxa ◽  
2016 ◽  
Vol 266 (2) ◽  
pp. 134 ◽  
Author(s):  
QI ZHAO ◽  
YAN-JIA HAO ◽  
JIAN-KUI LIU ◽  
KEVIN D. HYDE ◽  
YANG-YANG CUI ◽  
...  

Infundibulicybe rufa sp. nov., is described from Jiuzhaigou Biosphere Reserve, southwestern China. It is characterized by the combination of the following characters: umbilicate to slightly infundibuliform, reddish brown pileus; decurrent, cream lamellae; cylindrical stipe concolorous with the pileus surface. Molecular phylogenetic analyses using the nuclear ribosomal internal transcribed spacer (ITS) region indicates that I. rufa is closely related to I. mediterranea and I. bresadolana. A description, line drawings, phylogenetic placement and comparison with allied taxa for the new taxon are presented.


Nematology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Samira Aliverdi ◽  
Ebrahim Pourjam ◽  
Majid Pedram

Summary Ditylenchus acantholimonis n. sp. is described based on morphological, morphometric and molecular characters. It was isolated from the rhizosphere soil of Acantholimon sp. in Golestan province, Iran, and is mainly characterised by having four lines in the lateral field, a pyriform to bottle-shaped offset pharyngeal bulb, post-vulval uterine sac 36.6-56.1% of the vulva to anus distance long, and a subcylindrical to conical tail with widely rounded tip. It is further characterised by short to medium-sized females, 480-617 μm long, with a fine stylet having small rounded knobs, V = 80.8-83.6, c = 11.0-13.8, c′ = 3.3-4.6, and males with 16.0-17.0 μm long spicules. The new species was morphologically compared with six species having four lines in their lateral field, rounded tail tip and comparable morphometric data namely: D. dipsacoideus, D. emus, D. exilis, D. paraparvus, D. sturhani, and D. solani. It was also compared with two species, D. ferepolitor and D. angustus, forming a maximally supported clade in the 18S tree. The phylogenetic analyses using the maximal number of Anguinidae and several Sphaerularioidea genera based upon partial 18S and 28S rDNA D2-D3 sequences revealed that Ditylenchus is polyphyletic. In the 18S tree, the new species formed a clade with D. ferepolitor (KJ636374) and D. angustus (AJ966483); in the 28S tree it formed a poorly supported clade with D. phyllobios (KT192618) and Ditylenchus sp. (MG865719).


Phytotaxa ◽  
2019 ◽  
Vol 391 (1) ◽  
pp. 1
Author(s):  
FERNANDA KARSTEDT ◽  
MARINA CAPELARI ◽  
TIMOTHY J. BARONI ◽  
DAVID L. LARGENT ◽  
SARAH E. BERGEMANN

The generic or subgeneric delimitation by morphology of the Entolomataceae (Agaricales, Basidiomycota) is often based on the habit and external features of the basidiomata, the hyphal arrangement of the pileus surface and the shape of the basidiospores, which possess either bumps or undulate-pustules forming short ridges, or longitudinal ridges or are obviously angular with four to nine angles in profile view. Here, we examine the basidiospore shape of species in the /Entoloma clade described as cuboid to evaluate its importance in taxonomy using both phylogenetic and detailed analyses of the shape with Scanning Electron Microscopy. Our phylogenetic analyses support the placement of species with cuboid basidiospores into one of two clades. Based on this separation, two new subgenera of Entoloma are proposed: Cuboeccilia with an omphalinoid habit and fusoid cystidia and Cubospora which has a mycenoid to tricholomatoid habit and clavate, rarely fusoid cheilocystidia.


MycoKeys ◽  
2020 ◽  
Vol 75 ◽  
pp. 1-29
Author(s):  
Komsit Wisitrassameewong ◽  
Myung Soo Park ◽  
Hyun Lee ◽  
Aniket Ghosh ◽  
Kanad Das ◽  
...  

Russula subsection Amoeninae is morphologically defined by a dry velvety pileus surface, a complete absence of cystidia with heteromorphous contents in all tissues, and spores without amyloid suprahilar spot. Thirty-four species within subsection Amoeninae have been published worldwide. Although most Russula species in South Korea have been assigned European or North American names, recent molecular studies have shown that Russula species from different continents are not conspecific. Therefore, the present study aims to: 1) define which species of Russula subsection Amoeninae occur on each continent using molecular phylogenetic analyses; 2) revise the taxonomy of Korean Amoeninae. The phylogenetic analyses using the internal transcribed spacer (ITS) and multilocus sequences showed that subsection Amoeninae is monophyletic within subgenus Heterophyllidiae section Heterophyllae. A total of 21 Russula subsection Amoeninae species were confirmed from Asia, Australia, Europe, North America, and Central America, and species from different continents formed separate clades. Three species were recognized from South Korea and were clearly separated from the European and North American species. These species are R. bella, also reported from Japan, a new species described herein, Russula orientipurpurea, and a new species undescribed due to insufficient material.


Phytotaxa ◽  
2018 ◽  
Vol 336 (3) ◽  
pp. 286 ◽  
Author(s):  
HONG-MEI WU ◽  
JIA-QI LUO ◽  
KE WANG ◽  
RUN-CHAO ZHANG ◽  
YI LI ◽  
...  

During field expeditions to the Tibetan Plateau, a collection of an undescribed species with several basidiomes was found. Morphological observation and DNA sequence analyses of the collection revealed a close relationship with Cleistocybe vernalis, the type species of the genus Cleistocybe. Therefore, a new species is proposed for the fungus with full morphological description accompanied by phylogenetic analyses. The discovery of the species extends the reported distribution of the genus from the north of America and Europe to Asia.


2017 ◽  
Vol 83 (6) ◽  
Author(s):  
Abdelhakim Msaddak ◽  
David Durán ◽  
Mokhtar Rejili ◽  
Mohamed Mars ◽  
Tomás Ruiz-Argüeso ◽  
...  

ABSTRACT The genetic diversity of bacterial populations nodulating Lupinus micranthus in five geographical sites from northern Tunisia was examined. Phylogenetic analyses of 50 isolates based on partial sequences of recA and gyrB grouped strains into seven clusters, five of which belong to the genus Bradyrhizobium (28 isolates), one to Phyllobacterium (2 isolates), and one, remarkably, to Microvirga (20 isolates). The largest Bradyrhizobium cluster (17 isolates) grouped with the B. lupini species, and the other five clusters were close to different recently defined Bradyrhizobium species. Isolates close to Microvirga were obtained from nodules of plants from four of the five sites sampled. We carried out an in-depth phylogenetic study with representatives of the seven clusters using sequences from housekeeping genes (rrs, recA, glnII, gyrB, and dnaK) and obtained consistent results. A phylogeny based on the sequence of the symbiotic gene nodC identified four groups, three formed by Bradyrhizobium isolates and one by the Microvirga and Phyllobacterium isolates. Symbiotic behaviors of the representative strains were tested, and some congruence between symbiovars and symbiotic performance was observed. These data indicate a remarkable diversity of L. micranthus root nodule symbionts in northern Tunisia, including strains from the Bradyrhizobiaceae, Methylobacteriaceae, and Phyllobacteriaceae families, in contrast with those of the rhizobial populations nodulating lupines in the Old World, including L. micranthus from other Mediterranean areas, which are nodulated mostly by Bradyrhizobium strains. IMPORTANCE Lupinus micranthus is a legume broadly distributed in the Mediterranean region and plays an important role in soil fertility and vegetation coverage by fixing nitrogen and solubilizing phosphate in semiarid areas. Direct sowing to extend the distribution of this indigenous legume can contribute to the prevention of soil erosion in pre-Saharan lands of Tunisia. However, rhizobial populations associated with L. micranthus are poorly understood. In this context, the diversity of endosymbionts of this legume was investigated. Most Lupinus species are nodulated by Bradyrhizobium strains. This work showed that about half of the isolates from northern Tunisian soils were in fact Bradyrhizobium symbionts, but the other half were found unexpectedly to be bacteria within the genera Microvirga and Phyllobacterium. These unusual endosymbionts may have a great ecological relevance. Inoculation with the appropriate selected symbiotic bacterial partners will increase L. micranthus survival with consequent advantages for the environment in semiarid areas of Tunisia.


Phytotaxa ◽  
2021 ◽  
Vol 505 (1) ◽  
pp. 71-84
Author(s):  
ERIC DE CAMARGO SMIDT ◽  
A. L. V. TOSCANO DE BRITO ◽  
ANNA VICTORIA SILVÉRIO R. MAUAD ◽  
NICOLÁS GUTIÉRREZ MORALES

Prior taxonomic studies in subtribe Pleurothallidinae have suggested a close relationship between miscellaneous species featuring long-repent, segmented rhizomes, abbreviated ramicauls, few-flowered inflorescences, and flowers with partially connate sepals and trilobed lip. The lack of phylogenetic information for most species has prevented further conclusions or changes in their taxonomy; and as a result, they are currently assigned to several unrelated genera: Anathallis, Madisonia, Pabstiella, Pleurothallis, Sansonia and Specklinia. We performed phylogenetic analyses using nuclear (nrITS) and five plastid (matK, psbD-trnT, rps16-trnQ, trnH-psbA and trnS-trnG) markers and demonstrated that these species form an isolated clade which requires generic recognition. The name Madisonia, previously a monotypic genus endemic of the Amazon basin, is re-circumscribed and expanded to include nine species distributed in the Atlantic Rainforest and the Caribbean. Eight new nomenclatural combinations are proposed.


Zootaxa ◽  
2019 ◽  
Vol 4615 (2) ◽  
pp. 201
Author(s):  
ADRIANA ALVIZU ◽  
JOANA R. XAVIER ◽  
HANS TORE RAPP

A recent phylogenetic study revealed a close relationship between chiactine-bearing (family Achramorphidae, order Leucosolenida) and pugiole-bearing (order Baerida) calcaronean sponges as well as new putative taxa within Achramorphidae. In this study, we present a revision of chiactine-bearing sponges based on morphological re-examination of type material and recently collected specimens, in addition to new molecular data for the ribosomal 18S and C-region of the 28S. We provide re-descriptions for all known chiactine-bearing species, and further describe two new species from the Antarctic (Achramorpha antarctica sp. nov. and Megapogon schiaparellii sp. nov.) and two new species and a new genus from the Nordic Seas (Achramorpha ingolfi sp. nov. and Sarsinella karasikensis gen. nov. sp. nov.). The new phylogenetic reconstruction based on ribosomal 18S and C-region of the 28S confirms previous findings about the close relationship of some members of Baerida and the family Achramorphidae of the order Leucosolenida. However, new material and the addition of molecular data from the type species of both taxa would be required to formally propose changes at (sub-)ordinal levels within the classification of Calcaronean sponges. 


Phytotaxa ◽  
2017 ◽  
Vol 319 (1) ◽  
pp. 84 ◽  
Author(s):  
XUDONG LIU ◽  
HUAN ZHU ◽  
BENWEN LIU ◽  
GUOXIANG LIU ◽  
ZHENGYU HU

The genus Nephrocytium Nägeli is a common member of phytoplankton communities that has a distinctive morphology. Its taxonomic position is traditionally considered to be within the family Oocystaceae (Trebouxiophyceae). However, research on its ultrastructure is rare, and the phylogenetic position has not yet been determined. In this study, two strains of Nephrocytium, N. agardhianum Nägeli and N. limneticum (G.M.Smith) G.M.Smith, were identified and successfully cultured in the laboratory. Morphological inspection by light and electron microscopy and molecular phylogenetic analyses were performed to explore the taxonomic position. Ultrastructure implied a likely irregular network of dense and fine ribs on the surface of the daughter cell wall that resembled that of the genus Chromochloris Kol & Chodat (Chromochloridaceae). Phylogenetic analyses revealed that Nephrocytium formed an independent lineage in the order Sphaeropleales (Chlorophyceae) with high support values and a close phylogenetic relationship with Chromochloris. Based on combined morphological, ultrastructural and phylogenetic data, we propose a re-classification of Nephrocytium into Sphaeropleales, sharing a close relationship with Chromochloris.


Sign in / Sign up

Export Citation Format

Share Document