scholarly journals A survey of lifespans in Oribatida excluding Astigmata (Acari)

Zoosymposia ◽  
2021 ◽  
Vol 20 ◽  
Author(s):  
TOBIAS PFINGSTL ◽  
HEINRICH SCHATZ

This contribution provides an update on the duration of life cycles and lifespans of oribatid mites based on a literature review. The total lifespan is the sum of the immature developmental time (egg to adult) and the longevity of the adult. Most investigations were carried out in the laboratory, few were performed in the field, under field conditions and/or compared with field data. Many life cycles were investigated under different environmental influences. The life cycles of 144 oribatid species are listed. Compared with the total number of known oribatid species, this number is very low. Data for the total lifespan are given for 52 species, either from observations in the laboratory or estimated in comparison with field studies, but can only be guesses of the real lifespan. The typical lifespan of an oribatid species in temperate or boreal regions lasts between 1 and 2 years, rarely 3 years. The few investigated tropical species from laboratory experiments show generally faster development and shorter lifespans as species from temperate regions; no field studies have been carried out in the tropics yet. Long lifespan periods of 5 to 8 years are particularly characteristic of species in polar regions and in mountainous temperate regions. Some examples of species with different longevity in distinct climate regions, very long lifespans and change of life parameters under stressful laboratory conditions are presented.

2019 ◽  
Vol 50 (1) ◽  
pp. 303-333 ◽  
Author(s):  
Kimberly S. Sheldon

Climate change is affecting every ecosystem on Earth. Though climate change is global in scope, literature reviews on the biotic impacts of climate change have focused on temperate and polar regions. Tropical species have distinct life histories and physiologies, and ecological communities are assembled differently across latitude. Thus, tropical species and communities may exhibit different responses to climate change compared with those in temperate and polar regions. What are the fingerprints of climate change in the tropics? This review summarizes the current state of knowledge on impacts of climate change in tropical regions and discusses research priorities to better understand the ways in which species and ecological communities are responding to climate change in the most biodiverse places on Earth.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicholas L. Payne ◽  
Simon A. Morley ◽  
Lewis G. Halsey ◽  
James A. Smith ◽  
Rick Stuart-Smith ◽  
...  

AbstractExtrapolating patterns from individuals to populations informs climate vulnerability models, yet biological responses to warming are uncertain at both levels. Here we contrast data on the heating tolerances of fishes from laboratory experiments with abundance patterns of wild populations. We find that heating tolerances in terms of individual physiologies in the lab and abundance in the wild decline with increasing temperature at the same rate. However, at a given acclimation temperature or optimum temperature, tropical individuals and populations have broader heating tolerances than temperate ones. These congruent relationships implicate a tight coupling between physiological and demographic processes underpinning macroecological patterns, and identify vulnerability in both temperate and tropical species.


2018 ◽  
Vol 11 (9) ◽  
pp. 4981-5006 ◽  
Author(s):  
Christian Borger ◽  
Matthias Schneider ◽  
Benjamin Ertl ◽  
Frank Hase ◽  
Omaira E. García ◽  
...  

Abstract. Volume mixing ratio water vapour profiles have been retrieved from IASI (Infrared Atmospheric Sounding Interferometer) spectra using the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) processor. The retrievals are done for IASI observations that coincide with Vaisala RS92 radiosonde measurements performed in the framework of the GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) in three different climate zones: the tropics (Manus Island, 2° S), mid-latitudes (Lindenberg, 52° N), and polar regions (Sodankylä, 67° N). The retrievals show good sensitivity with respect to the vertical H2O distribution between 1 km above ground and the upper troposphere. Typical DOFS (degrees of freedom for signal) values are about 5.6 for the tropics, 5.1 for summertime mid-latitudes, 3.8 for wintertime mid-latitudes, and 4.4 for summertime polar regions. The errors of the MUSICA IASI water vapour profiles have been theoretically estimated considering the contribution of many different uncertainty sources. For all three climate regions, unrecognized cirrus clouds and uncertainties in atmospheric temperature have been identified as the most important error sources and they can reach about 25 %. The MUSICA IASI water vapour profiles have been compared to 100 individual coincident GRUAN water vapour profiles. The systematic difference between the data is within 11 % below 12 km altitude; however, at higher altitudes the MUSICA IASI data show a dry bias with respect to the GRUAN data of up to 21 %. The scatter is largest close to the surface (30 %), but never exceeds 21 % above 1 km altitude. The comparison study documents that the MUSICA IASI retrieval processor provides H2O profiles that capture the large variations in H2O volume mixing ratio profiles well from 1 km above ground up to altitudes close to the tropopause. Above 5 km the observed scatter with respect to GRUAN data is in reasonable agreement with the combined MUSICA IASI and GRUAN random errors. The increased scatter at lower altitudes might be explained by surface emissivity uncertainties at the summertime continental sites of Lindenberg and Sodankylä, and the upper tropospheric dry bias might suggest deficits in correctly modelling the spectroscopic line shapes of water vapour.


2021 ◽  
Author(s):  
An Ning ◽  
Ling Liu ◽  
Lin Ji ◽  
Xiuhui Zhang

Abstract. Both iodic acid (HIO3, IA) and methanesulfonic acid (CH3S(O)2OH, MSA) have been identified by field studies as important precursors of new particle formation (NPF) in marine areas. However, the mechanism of NPF in which IA and MSA are jointly involved is still unclear. Hence, we investigated the IA-MSA nucleation system under different atmospheric conditions and uncovered the corresponding nucleating mechanism at a molecular level for the first time using quantum chemical approach and Atmospheric Cluster Dynamics Code (ACDC). The findings showed that MSA can stabilize IA clusters via both hydrogen and halogen bonds. Moreover, the joint nucleation rate of IA-MSA system is significantly higher than that of IA self-nucleation, particularly in relatively cold marine regions with sparse IA and rich MSA. For the IA-MSA nucleation mechanism, in addition to self-nucleation of IA, the IA-MSA-involved clusters can also directly participate in the nucleation process, and their contribution is particularly prominent in the polar regions with rich MSA and sparse IA. The IA-MSA nucleation mechanism revealed in this work may help to elucidate some missing sources of marine NPF.


2020 ◽  
Author(s):  
Javer A. Barrera ◽  
Rafael P. Fernandez ◽  
Fernando Iglesias-Suarez ◽  
Carlos A. Cuevas ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. Biogenic very short-lived bromine (VSLBr) represents, nowadays, ~ 25 % of the total stratospheric bromine loading. Owing to their much shorter lifetime compared to anthropogenic long-lived bromine (LLBr, e.g., halons) and chlorine (LLCl, e.g., chlorofluorocarbons) substances, the impact of VSLBr on ozone peaks at the extratropical lowermost stratosphere, a key climatic and radiative atmospheric region. Here we present a modelling study of the evolution of stratospheric ozone and its chemical losses in extra-polar regions during the 21st century, under two different scenarios: considering and neglecting the additional stratospheric injection of 5 ppt biogenic VSLBr naturally released from the ocean. Our analysis shows that the inclusion of VSLBr result in a realistic stratospheric bromine loading and improves the quantitative 1980–2015 model-satellite agreement of total ozone column (TOC) in the mid-latitudes. We show that the overall ozone response to VSLBr within the mid-latitudes follows the stratospheric abundances evolution of long-lived inorganic chlorine and bromine throughout the 21st century. Additional ozone losses due to VSLBr are maximised during the present-day period (1990–2010), with TOC differences of −8 DU (−3 %) and −5.5 DU (−2 %) for the southern (SH-ML) and northern (NH-ML) mid-latitudes, respectively. Moreover, the projected TOC differences at the end of the 21st century are at least half of the values found for the present-day period. In the tropics, a small (


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249673
Author(s):  
Sara Sario ◽  
Conceição Santos ◽  
Fátima Gonçalves ◽  
Laura Torres

Drosophila suzukii (spotted wing drosophila, SWD) is a pandemic quarantine pest that attacks mostly red fruits. The high number of life cycles per year, its ability to rapidly invade and spread across new habitats, and highly polyphagous nature, makes this a particularly aggressive invasive species, for which efficient control methods are currently lacking. The use of native natural predators is particularly promising to anchor sustainable and efficient measures to control SWD. While several field studies have suggested the presence of potential predatory species in infested orchards, only a few confirmed the presence of SWD DNA in predators’ gut content. Here, we use a DNA-based approach to identify SWD predators among the arthropod diversity in South Europe, by examining the gut content of potential predator specimens collected in SWD-infested berry fields in North Portugal. These specimens were morphologically identified to the family/order, and their gut content was screened for the presence of SWD DNA using PCR. New SWD predatory taxonomical groups were identified, as Opiliones and Hemerobiidae, in addition to known SWD predators, such as Hemerobiidae, Chrysopidae, Miridae, Carabidae, Formicidae and Araneae. Additionally, the presence of a spider family, Uloboridae, in the orchards was recorded for the first time, posing this family as another SWD-candidate predator. This study sets important bases to further investigate the potential large-scale use of some of these confirmed predator taxa for SWD control in South Europe.


2012 ◽  
Vol 60 (6) ◽  
pp. 526 ◽  
Author(s):  
T. R. Kinge ◽  
A. M. Mih ◽  
M. P. A. Coetzee

Ganoderma is an important genus of the Polyporales in the tropics. Identification of tropical species has mainly been based on morphology, which has led to misidentification. This study aimed to elucidate the diversity and phylogenetic relationships of Ganoderma isolates from different hosts in Cameroon using morphological and molecular techniques. Analyses of basidiocarp morphology and the internal transcribed spacer and mitochondria small subunit were undertaken for 28 isolates from five plant species. The results show that the isolates belong to eight species. Three of the species were identified to species level; of these only G. ryvardense has been previously described from Cameroon while G. cupreum and G. weberianum are new records. The five remaining species did not match with any previously described species and have been designated as Ganoderma with different species affinities.


2021 ◽  
Vol 17 (10) ◽  
Author(s):  
Ethan B. Linck ◽  
Benjamin G. Freeman ◽  
C. Daniel Cadena ◽  
Cameron K. Ghalambor

Rapid species turnover in tropical mountains has fascinated biologists for centuries. A popular explanation for this heightened beta diversity is that climatic stability at low latitudes promotes the evolution of narrow thermal tolerance ranges, leading to local adaptation, evolutionary divergence and parapatric speciation along elevational gradients. However, an emerging consensus from research spanning phylogenetics, biogeography and behavioural ecology is that this process rarely, if ever, occurs. Instead, closely related species typically occupy a similar elevational niche, while species with divergent elevational niches tend to be more distantly related. These results suggest populations have responded to past environmental change not by adapting and diverging in place, but instead by shifting their distributions to tightly track climate over time. We argue that tropical species are likely to respond similarly to ongoing and future climate warming, an inference supported by evidence from recent range shifts. In the absence of widespread in situ adaptation to new climate regimes by tropical taxa, conservation planning should prioritize protecting large swaths of habitat to facilitate movement.


Sign in / Sign up

Export Citation Format

Share Document