Review of bioacoustical traits in the genus Physalaemus Fitzinger, 1826 (Anura: Leptodactylidae: Leiuperinae)

Zootaxa ◽  
2020 ◽  
Vol 4725 (1) ◽  
pp. 1-106
Author(s):  
FÁBIO HEPP ◽  
JOSÉ P. JR. POMBAL

Given the importance of acoustic communication in intraspecific recognition during mating activity, acoustic traits have been widely used to clarify the taxonomy of anurans. They have been particularly useful in the study of taxa with high morphological similarity such as the Neotropical genus Physalaemus. Here, we reviewed the acoustic repertoires of the species of Physalaemus based on homology hypotheses in order to make comparisons more properly applicable for taxonomic purposes. We covered all the known clades and species groups for the genus, analyzing 45 species (94 % of the currently recognized taxa). Different call types were labeled with letters (i.e., A, B, and C) to avoid speculative functional propositions for the call types. In order to identify correctly the observed frequency bands, we propose a method to interpret them based on the predicted graphic behavior on audiospectrogram and on the mathematic relationship among bands considering each kind of band production (e.g., harmonics and sidebands). We found different acoustic traits between the major clades P. signifer and P. cuvieri. Species in the P. signifer clade have more than one call type (67 % of species in the clade). Furthermore, all species of this clade have A calls with pulses and/or low fundamental frequency (< 500 Hz). In the P. cuvieri clade, species emit only one call type and, in most species, this call is a continuous whine-like emission with relatively high fundamental frequency (> 400 Hz) and several S-shaped harmonics (except for species of P. henselii and P. olfersii groups, P. centralis, and P. cicada). Within the P. signifer clade, pulsed calls are present in P. angrensis, P. atlanticus, P. bokermanni, P. crombiei, P. irroratus, P. moreirae, P. nanus, and P. obtectus, whereas within the P. cuvieri clade this feature is restricted to a few species (10 % of the clade): P. jordanensis, P. feioi, and P. orophilus. A principal component analysis of the quantitative data indicates two clusters that substantially correspond to the composition of these two major clades with a few exceptions. Overall, the cluster composed of taxa of the P. signifer clade has lower fundamental frequency, bandwidth and dominant frequency at the end of the call and higher frequency delta and dominant frequency at the end of the call than the cluster with most taxa of the P. cuvieri clade. We also identified and described several similarities among acoustic signals of closely related species, which might correspond to synapomorphies in the evolution of the acoustic signal in the group. Species of the P. deimaticus group emit long sequences of very short A calls with low fundamental frequency (< 300 Hz) and short duration (< 0.2 s). Most species in the P. signifer group have clearly pulsed calls and emit at least two different call types. Species in the P. henselii group have calls with only high frequency bands (> 1700 Hz). Species in P. cuvieri group have continuous calls that resemble nasal-like sounds or whines, with downward frequency modulation. Species in the P. olfersii group emit long calls (> 1 s) with ascendant and periodic frequency modulation. Calls of the species in the P. biligonigerus and P. gracilis groups usually have continuous whine-like calls with call envelopes very variable within species. In addition, we describe traits in the genus for the first time, such as complex traits not predicted by simple and linear acoustic models (nonlinear phenomena), and discuss the application of acoustic traits to taxonomy and phylogenetics and morphological constraints of the vocal apparatus that might be related to the different acoustic properties found. 

BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Changjian Fu ◽  
Atul Kathait ◽  
Guangyi Lu ◽  
Xiang Li ◽  
Feng Li ◽  
...  

Abstract Background Although acoustic communication plays an essential role in the social interactions of Rallidae, our knowledge of how Rallidae encode diverse types of information using simple vocalizations is limited. We recorded and examined the vocalizations of a common coot (Fulica atra) population during the breeding season to test the hypotheses that 1) different call types can be emitted under different behavioral contexts, and 2) variation in the vocal structure of a single call type may be influenced both by behavioral motivations and individual signature. We measured a total of 61 recordings of 30 adults while noting the behavioral activities in which individuals were engaged. We compared several acoustic parameters of the same call type emitted under different behavioral activities to determine how frequency and temporal parameters changed depending on behavioral motivations and individual differences. Results We found that adult common coots had a small vocal repertoire, including 4 types of call, composed of a single syllable that was used during 9 types of behaviors. The 4 calls significantly differed in both frequency and temporal parameters and can be clearly distinguished by discriminant function analysis. Minimum frequency of fundamental frequency (F0min) and duration of syllable (T) contributed the most to acoustic divergence between calls. Call a was the most commonly used (in 8 of the 9 behaviors detected), and maximum frequency of fundamental frequency (F0max) and interval of syllables (TI) contributed the most to variation in call a. Duration of syllable (T) in a single call a can vary with different behavioral motivations after individual vocal signature being controlled. Conclusions These results demonstrate that several call types of a small repertoire, and a single call with function-related changes in the temporal parameter in common coots could potentially indicate various behavioral motivations and individual signature. This study advances our knowledge of how Rallidae use “simple” vocal systems to express diverse motivations and provides new models for future studies on the role of vocalization in avian communication and behavior.


Author(s):  
Yeptain Leung ◽  
Jennifer Oates ◽  
Siew-Pang Chan ◽  
Viktória Papp

Purpose The aim of the study was to examine associations between speaking fundamental frequency ( f os ), vowel formant frequencies ( F ), listener perceptions of speaker gender, and vocal femininity–masculinity. Method An exploratory study was undertaken to examine associations between f os , F 1 – F 3 , listener perceptions of speaker gender (nominal scale), and vocal femininity–masculinity (visual analog scale). For 379 speakers of Australian English aged 18–60 years, f os mode and F 1 – F 3 (12 monophthongs; total of 36 F s) were analyzed on a standard reading passage. Seventeen listeners rated speaker gender and vocal femininity–masculinity on randomized audio recordings of these speakers. Results Model building using principal component analysis suggested the 36 F s could be succinctly reduced to seven principal components (PCs). Generalized structural equation modeling (with the seven PCs of F and f os as predictors) suggested that only F 2 and f os predicted listener perceptions of speaker gender (male, female, unable to decide). However, listener perceptions of vocal femininity–masculinity behaved differently and were predicted by F 1 , F 3 , and the contrast between monophthongs at the extremities of the F 1 acoustic vowel space, in addition to F 2 and f os . Furthermore, listeners' perceptions of speaker gender also influenced ratings of vocal femininity–masculinity substantially. Conclusion Adjusted odds ratios highlighted the substantially larger contribution of F to listener perceptions of speaker gender and vocal femininity–masculinity relative to f os than has previously been reported.


2021 ◽  
Vol 9 (3) ◽  
pp. 429
Author(s):  
I Gede Erwin Winata Pratama ◽  
Luh Arida Ayu Rahning Putri

Terompong is a type of gamelan in Bali Province. This gamelan is commonly used in traditional ceremonies in Bali, especially the Dewa Yadnya and Pitra Yadnya. The terompong are striking instruments, where the bat is made of wood. The terompong is also a two-octave musical instrument composed of 10-12 small metal gong blocks. The gong blocks are arranged parallel, which makes the gong difficult to carry and has to stay somewhere if someone want to play. Of course, with this situation people find it difficult to learn the terompong because they are quite large and heavy. This problem could be solved by replace the original terompong with synthetic terompong. The synthesis referred here the synthesis of sound. In performing sound synthesis, the method used is Frequency Modulation (FM). The result of the synthesis carried out where the difference between fundamental frequency of the original tone and the synthesis tone is almost close to zero. The sound produced almost follows the original sound, but it can't follow the sound of metal being hit with a wooden club.


2019 ◽  
Vol 12 (1) ◽  
pp. 79 ◽  
Author(s):  
Mosbeh R. Kaloop ◽  
Cemal O. Yigit ◽  
Ahmed El-Mowafy ◽  
Ahmet A. Dindar ◽  
Mert Bezcioglu ◽  
...  

Nowadays, the high rate GNSS (Global Navigation Satellite Systems) positioning methods are widely used as a complementary tool to other geotechnical sensors, such as accelerometers, seismometers, and inertial measurement units (IMU), to evaluate dynamic displacement responses of engineering structures. However, the most common problem in structural health monitoring (SHM) using GNSS is the presence of surrounding structures that cause multipath errors in GNSS observations. Skyscrapers and high-rise buildings in metropolitan cities are generally close to each other, and long-span bridges have towers, main cable, and suspender cables. Therefore, multipath error in GNSS observations, which is typically added to the measurement noise, is inevitable while monitoring such flexible engineering structures. Unlike other errors like atmospheric errors, which are mostly reduced or modeled out, multipath errors are the largest remaining unmanaged error sources. The high noise levels of high-rate GNSS solutions limit their structural monitoring application for detecting load-induced semi-static and dynamic displacements. This study investigates the estimation of accurate dynamic characteristics (frequency and amplitude) of structural or seismic motions derived from multipath-affected high-rate GNSS observations. To this end, a novel hybrid model using both wavelet-based multiscale principal component analysis (MSPCA) and wavelet transform (MSPCAW) is designed to extract the amplitude and frequency of both GNSS relative- and PPP- (Precise Point Positioning) derived displacement motions. To evaluate the method, a shaking table with a GNSS receiver attached to it, collecting 10 Hz data, was set up close to a building. The table was used to generate various amplitudes and frequencies of harmonic motions. In addition, 50-Hz linear variable differential transformer (LVDT) observations were collected to verify the MSMPCAW model by comparing their results. The results showed that the MSPCAW could be efficiently used to extract the dynamic characteristics of noisy dynamic movements under seismic loads. Furthermore, the dynamic behavior of seismic motions can be extracted accurately using GNSS-PPP, and its dominant frequency equals that extracted by LVDT and relative GNSS positioning method. Its accuracy in determining the amplitude approaches 91.5% relative to the LVDT observations.


2019 ◽  
Vol 9 (3) ◽  
pp. 446
Author(s):  
Huang Yiming ◽  
Deng Jianhui ◽  
Zhu Jun

The decrease of strength after saturation of rocks is known as moisture-induced softening. To date, there are numerous studies on the mechanism of moisture-induced softening of different rocks. However, due to a lack of effective observational methods, the microcosmic mechanism of moisture-induced softening still needs to be understood. We collected and processed acoustic emission (AE) signals during the uniaxial compression test of marble specimens. The results of spectral and statistical analysis show that two dominant frequency bands of AE waveforms exist regardless of the specimen’s water content. Additionally, for the AE signals from the saturated specimens, the ranges of the low and high frequency bands are wider than dried rock samples. Besides, since the tensile and shear failures in the rock release low and high dominant frequency AE signals, respectively, the test results of this paper show that micro-shear and micro-tensile failures dominate the final failure of dried and saturated rocks, respectively.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Jeong-Guon Ih ◽  
Su-Won Jang ◽  
Cheol-Ho Jeong ◽  
Youn-Young Jeung

In operating the air-cleaner for a long time, people in a quiet enclosed space expect low sound at low operational levels for a routine cleaning of air. However, in the condition of high operational levels of the cleaner, a powerful yet nonannoying sound is desired, which is connected to a feeling of an immediate cleaning of pollutants. In this context, it is important to evaluate and design the air-cleaner noise to satisfy such contradictory expectations from the customers. In this study, a model for evaluating the sound quality of air-cleaners of mechanical type was developed based on objective and subjective analyses. Sound signals from various air-cleaners were recorded and they were edited by increasing or decreasing the loudness at three wide specific-loudness bands: 20–400 Hz (0–3.8 barks), 400–1250 Hz (3.8–10 barks), and 1.25–12.5 kHz bands (10–22.8 barks). Subjective tests using the edited sounds were conducted by the semantic differential method (SDM) and the method of successive intervals (MSI). SDM tests for seven adjective pairs were conducted to find the relation between subjective feeling and frequency bands. Two major feelings, performance and annoyance, were factored out from the principal component analysis. We found that the performance feeling was related to both low and high frequency bands, whereas the annoyance feeling was related to high frequency bands. MSI tests using the seven scales were conducted to derive the sound quality index to express the severity of each perceptive descriptor. Annoyance and performance indices of air-cleaners were modeled from the subjective responses of the juries and the measured sound quality metrics: loudness, sharpness, roughness, and fluctuation strength. The multiple regression method was employed to generate sound quality evaluation models. Using the developed indices, sound quality of the measured data was evaluated and compared with the subjective data. The difference between predicted and tested scores was less than 0.5 points.


2017 ◽  
Vol 2 (1) ◽  
pp. 20-36 ◽  
Author(s):  
Morgan L. Gustison ◽  
Thore J. Bergman

Abstract Human speech has many complex spectral and temporal features traditionally thought to be absent in the vocalizations of other primates. Recent explorations of the vocal capabilities of non-human primates are challenging this view. Here, we continue this trend by exploring the spectro-temporal properties of gelada (Theropithecus gelada) vocalizations. First, we made cross-species comparisons of geladas, chacma baboons, and human vowel space area. We found that adult male and female gelada exhaled grunts–a call type shared with baboons—have formant profiles that overlap more with human vowel space than do baboon grunts. These gelada grunts also contained more modulation of fundamental and formant frequencies than did baboon grunts. Second, we compared formant profiles and modulation of exhaled grunts to the derived call types (those not shared with baboons) produced by gelada males. These derived calls contained divergent formant profiles, and a subset of them, notably wobbles and vocalized yawns, were more modulated than grunts. Third, we investigated the rhythmic patterns of wobbles, a call type shown previously to contain cycles that match the 3–8 Hz tempo of speech. We use a larger dataset to show that the wobble rhythm overlaps more with speech rhythm than previously thought. We also found that variation in cycle duration depends on the production modality; specifically, exhaled wobbles were produced at a slower tempo than inhaled wobbles. Moreover, the variability in cycle duration within wobbles aligns with a linguistic property known as ‘Menzerath’s law’ in that there was a negative association between cycle duration and wobble size (i.e. the number of cycles). Taken together, our results add to growing evidence that non-human primates are anatomically capable of producing modulated sounds. Our results also support and expand on current hypotheses of speech evolution, including the ‘neural hypothesis’ and the ‘bimodal speech rhythm hypothesis’.


1996 ◽  
Vol 430 ◽  
Author(s):  
W. M. Van Loock

AbstractMicrowave power for heating applications is normally generated in the designated ISM frequency bands which occupy a band of 4%. Actual microwave generators, such as are used in domestic ovens utilise only a small fraction of this bandwidth. It is being demonstrated that spreading the power uniformly over the full ISM band by controlled frequency modulation dramatically reduces all levels of potential electromagnetic interference. With such controlled modulation telecommunication channels can operate within the ISM bands without serious problems because the leakage levels are reduced by 20 to 30 dB with no additional shielding costs. One simple (though not optimum) modulating waveform is a large ripple voltage on the magnetron power supply. Frequency modulation that spreads the energy over the full ISM band also improves the overall energy efficiency in multimode heating applications.


Sign in / Sign up

Export Citation Format

Share Document