Four new deep-water flabelligerid species from Pacific Costa Rica (Annelida, Sedentaria, Flabelligeridae)

Zootaxa ◽  
2020 ◽  
Vol 4885 (4) ◽  
pp. 560-578
Author(s):  
SERGIO I. SALAZAR-VALLEJO

The discovery of four undescribed flabelligerid species from deep-water in Pacific Costa Rica resulted in the restriction of Diplocirrus Haase, 1915. As currently understood, Diplocirrus and Pherusa Oken, 1807 are separated after their morphological pattern. The species belonging in Diplocirrus have two types of branchiae, poorly developed cephalic cages and multiarticulate neurochaetae, whereas Pherusa species have branchiae of one type, well-developed cephalic cages and completely anchylosed neurochaetae. Benthic sampling and processing usually damage cephalic cages and if chaetae are completely broken, one could regard specimens without them, when they actually have it, but lost after sieving. Sampling using Alvin deep-sea submarine at methane seeps off Costa Rica resulted in some well-preserved specimens, and some of them fall between these two genera because they have well developed cephalic cages, and multiarticulate neurochaetae. Saphobranchia Chamberlin, 1919, with Stylarioides longisetosa von Marenzeller, 1890, as type species, is herein reinstated for some species previously included in Diplocirrus, restricted. The transferred species, including three ones newly described herein, have branchiae of a single type, long cephalic cage and body chaetae, and neurochaetae basally anchylosed and medially and distally articulated; some species currently included in Diplocirrus described from Arctic or deep water sediments are transferred into it. A key to identify all species in Saphobranchia, and another key to identify species in the restricted Diplocirrus are also included. The three new Saphobranchia species are S. canela n. sp., S. ilys n. sp. and S. omorpha n. sp. The fourth species belongs in Lamispina Salazar-Vallejo, 2014, and it is herein described as L. polycerata n. sp. after the presence of some long papillae along anterior margin of chaetiger 1. 

2018 ◽  
Vol 32 (5) ◽  
pp. 1050 ◽  
Author(s):  
Greg W. Rouse ◽  
Jose Ignacio Carvajal ◽  
Fredrik Pleijel

Hesionidae Grube, 1850 currently comprises over 175 species in 28 genera, placed in several subfamilies. Discoveries in recent years have largely been of deep-sea taxa. Here we describe a further four new hesionid species, mainly from methane ‘cold’ seeps at around 1000–1800 m depths off the Pacific coast of Costa Rica and new record of another species. Several of these taxa also occur at methane seeps in the Guaymas Basis (Mexico) and off the USA west coast (California and Oregon). The phylogenetic relationships within Hesionidae are reassessed via maximum parsimony and maximum likelihood analyses of DNA sequences from nuclear (18S rRNA and 28SrRNA) and mitochondrial (16SrRNA and Cytochrome c oxidase I) loci for the new samples. On the basis of these results, we refer one of the new species to Gyptis Marion & Bobretzky in Marion, 1874, one to Neogyptis Pleijel, Rouse, Sundkvist & Nygren, 2012, and two to Sirsoe Pleijel, 1998. The new species Gyptis robertscrippsi n. sp., Neogyptis jeffruoccoi n. sp., Sirsoe dalailamai n. sp. and Sirsoe munki n. sp. We refer to a collection of individuals from seeps ranging from Oregon to Costa Rica as Amphiduropsis cf. axialensis (Blake & Hilbig, 1990), even though this species was described from hydrothermal vents off Oregon. Neogyptis jeffruoccoi n. sp. was generally found living inside the solemyid clam Acharax johnsoni (Dall, 1891). The position of Hesiolyra bergi Blake, 1985 is resolved on the basis of newly-collected specimens from near the type locality and, as a result, Hesiolyrinae Pleijel, 1998 is synonymized with Gyptini Pleijel, 1998 (and Gyptinae Pleijel, 1998). http://zoobank.org/urn:lsid:zoobank.org:pub:9C0E88EE-34F8-4F25-9EC8-91797618AC86


Zootaxa ◽  
2005 ◽  
Vol 932 (1) ◽  
pp. 1 ◽  
Author(s):  
HARRY M. SAVAGE ◽  
R. WILLS FLOWERS ◽  
WENDY PORRAS V.

A new genus, Tikuna, is described based on recent collections of adults and nymphs of Choroterpes atramentum Traver from western Costa Rica. All recent collections are from streams on or near the Nicoya Complex, the oldest geological formation in Lower Central America. Tikuna belongs to a lineage of South American Atalophlebiinae (Leptophlebiidae: Ephemeroptera) whose origin is hypothesized to have been in the late Cretaceous–early Tertiary. Some implications of the distribution of Tikuna for theories on the origin of Costa Rica’s biota are discussed.


Author(s):  
P. A. Tyler ◽  
J. D. Gage

INTRODUCTIONOphiacantha bidentata (Retzius) is a widespread arctic-boreal ophiuroid with a circumpolar distribution in the shallow waters of the Arctic seas and penetrating into the deep sea of the.North Atlantic and North Pacific (Mortensen, 1927, 1933a; D'yakonov, 1954). Early observations of this species were confined to defining zoogeo-graphical and taxonomic criteria including the separation of deep water specimens as the variety fraterna (Farran, 1912; Grieg, 1921; Mortensen, 1933a). Mortensen (1910) and Thorson (1936, pp. 18–26) noted the large eggs (o.8 mm diameter) in specimens from Greenland and Thorson (1936) proposed that this species had ‘big eggs rich in yolk, shed directly into the sea. Much reduced larval stage or direct development’. This evidence is supported by observations of O. bidentata from the White and Barents Seas (Semenova, Mileikovsky & Nesis, 1964; Kaufman, 1974)..


2021 ◽  
Vol 3 (8) ◽  
pp. 70-72
Author(s):  
Jianbo Hu ◽  
◽  
Yifeng Di ◽  
Qisheng Tang ◽  
Ren Wen ◽  
...  

In recent years, China has made certain achievements in shallow sea petroleum geological exploration and development, but the exploration of deep water areas is still in the initial stage, and the water depth in the South China Sea is generally 500 to 2000 meters, which is a deep water operation area. Although China has made some progress in the field of deep-water development of petroleum technology research, but compared with the international advanced countries in marine science and technology, there is a large gap, in the international competition is at a disadvantage, marine research technology and equipment is relatively backward, deep-sea resources exploration and development capacity is insufficient, high-end technology to foreign dependence. In order to better develop China's deep-sea oil and gas resources, it is necessary to strengthen the development of drilling and completion technology in the oil industry drilling engineering. This paper briefly describes the research overview, technical difficulties, design principles and main contents of the completion technology in deepwater drilling and completion engineering. It is expected to have some significance for the development of deepwater oil and gas fields in China.


Zootaxa ◽  
2021 ◽  
Vol 4927 (2) ◽  
pp. 294-296
Author(s):  
PEDRO H. N. BRAGANÇA ◽  
FELIPE P. OTTONI

The poeciliid species, Poecilia kempkesi Poeser, 2013, was the fourth species of the subgenus Acanthophacelus Eigenmann, 1907 to be described, based on individuals from a single urban anthropized locality close to Paramaribo, Suriname (Poeser, 2013). The description itself lacked any section clearly distinguishing the new species from the remaining species of Poecilia Bloch & Schneider 1801, and in particular from the species of the subgenus Acanthophacelus, type species Poecilia reticulata Peters, 1859. According to Article 13 of the International Code of Zoological Nomenclature (ICZN, 1999) the criteria of availability for a species-group name are: 


2021 ◽  
Vol 63 (3-4) ◽  
pp. 351-390
Author(s):  
S. Y. Kondratyuk ◽  
L. Lőkös ◽  
I. Kärnefelt ◽  
A. Thell ◽  
M.-H. Jeong ◽  
...  

Seven genera new to science, i.e.: Helmutiopsis, Huriopsis, Johnsheardia, Klauskalbia, Kudratovia, Kurokawia and Poeltonia of the Physciaceae are proposed for the ‘Rinodina’ atrocinerea, the ‘Rinodina’ xanthophaea, the ‘Rinodina’ cinnamomea, the ‘Heterodermia’ obscurata, the ‘Rinodina’ straussii, the ‘Anaptychia’ isidiata and the ‘Physconia’ grisea groups consequently that all form strongly supported monophyletic branches in a phylogeny analysis based on a combined matrix of nrITS and mtSSU sequences. Phylogenetic positions of species belonging to the genera Kashiwadia s. l., Leucodermia, Mischoblastia,Oxnerella, Phaeorrhiza s. l., Polyblastidium and Rinodinella s. l. are discussed. Oxnerella afghanica which for the first time recorded as parasitic lichen species from both epiphytic and saxicolous crustose lichens is designated as type species for the genus Oxnerella. Sequences of the recently described Physcia orientostellaris as well as Huriopsis xanthophaea and additional sequences of Kashiwadia aff. orientalis and Mischoblastia aff. oxydata are submitted to the GenBank. The positions of Polyblastidium casaterrinum from Costa Rica, ‘Rinodina’ efflorescens from Białowieża, Poland, and ‘Mischoblastia’ confragosula from Cambodia in the Physciaceae are confirmed in a phylogeny analysis based on the nrITS sequences. The presence of ‘extraneous mycobiont DNA’ in lichen associations is exemplified with earlier incorrect identifications of Heterodermia, Kashiwadia, Kurokawia,Oxnerella and Poeltonia specimens. Fifty-six new combinations are presented: Helmutiopsis alba (for Rinodina alba Metzler ex Arn.), Helmutiopsis aspersa (for Lecanora aspersa Borrer), Helmutiopsis atrocinerea (for Parmelia atrocinerea Fr.), Huriopsis chrysidiata (for Rinodina chrysidiata Sheard), Huriopsis chrysomelaena (for Rinodina chrysomelaena Tuck.), Huriopsis lepida (for Lecanora lepida Nyl.), Huriopsis luteonigra (for Rinodina luteonigra Zahlbr.), Huriopsis plana (for Rinodina plana H. Magn.), Huriopsis thiomela (for Lecanora thiomela Nyl.), Huriopsis xanthomelana (for Rinodina xanthomelana Müll. Arg.), Huriopsis xanthophaea (for Lecanora xanthophaea Nyl.), Johnsheardia cinnamomea (for Rinodina mniaroea var. cinnamomea Th. Fr.), Johnsheardia herteliana (for Rinodina herteliana Kaschik), Johnsheardia jamesii (for Rinodina jamesii H. Mayrhofer), Johnsheardia reagens (for Rinodina reagens Matzer et H. Mayrhofer), Johnsheardia zwackhiana (for Lecanora zwackhiana Kremp.), Kashiwadia austrostellaris (for Physcia austrostellaris Elix), Kashiwadia jackii (for Physcia jackii Moberg), Kashiwadia littoralis for Physcia littoralis Elix), Kashiwadia nubila (for Physcia nubila Moberg), and Kashiwadia tropica (for Physcia tropica Elix), Klauskalbia crocea (for Heterodermia crocea R. C. Harris), Klauskalbia flabellata (for Parmelia flabellata Fée), Klauskalbia obscurata (for Physcia speciosa (Wulfen) Nyl. *obscurata Nyl.), Klauskalbia paradoxa (for Heterodermia paradoxa Schumm et Schäfer-Verwimp), Kudratovia bohlinii (for Rinodina bohlinii H. Magn.), Kudratovia candidogrisea (for Rinodina candidogrisea Hafellner, Muggia et Obermayer), Kudratovia luridata (for Buellia luridata Körb.), Kudratovia metaboliza (for Rinodina metaboliza Vain.), Kudratovia pycnocarpa (for Rinodina pycnocarpa H. Magn.), Kudratovia roscida (for Lecanora roscida Sommerf.), Kudratovia straussii (for Rinodina straussii J. Steiner), Kudratovia terrestris (for Rinodina terrestris Tomin), Kurokawia bryorum (for Anaptychia bryorum Poelt), Kurokawia isidiata (for Anaptychia isidiata Tomin), Kurokawia mereschkowskii (for Physcia mereschkowskii Tomin), Kurokawia palmulata (for Psoroma palmulatum Michx.), Kurokawia runcinata (for Lichen runcinatus With.), Kurokawia stippea (for Parmelia aquila var. stippea Ach.), Lecania safavidiorum (for Oxnerella safavidiorum S. Y. Kondr., Zarei-Darki, Lőkös et Hur), Leucodermia erinacea (for Lichen erinaceus Ach.), Mischoblastia confragosula (for Lecanora confragosula Nyl.), Mischoblastia destituta (for Lecidea destituta Nyl.), Mischoblastia moziana (for Lecanora moziana Nyl.), Mischoblastia moziana subsp. parasitica (comb. et stat. nova for Rinodina moziana var. parasitica Kaschik et H. Mayrhofer), Mischoblastia ramboldii (for Rinodina ramboldii Kaschik), Mischoblastia vezdae (for Rinodina vezdae H. Mayrhofer), Oxnerella afghanica (for Rinodina afghanica M. Steiner et Poelt), Oxnerella castanomelodes (for Rinodina castanomelodes H. Mayrhofer et Poelt), Physciella nigricans (for Lecanora nigricans Flörke), Poeltonia elegantula (for Physconia elegantula Essl.), Poeltonia grisea (for Lichen griseus Lam.), Poeltonia isidiomuscigena (for Physconia isidiomuscigena Essl.), Poeltonia perisidiosa (for Physcia perisidiosa Erichsen), Poeltonia venusta (for Parmelia venusta Ach.), and Polyblastidium albicans (for Parmelia albicans Pers.) are proposed.


Zootaxa ◽  
2018 ◽  
Vol 4524 (1) ◽  
pp. 77 ◽  
Author(s):  
KEIJI BABA ◽  
SHANE T. AHYONG ◽  
KAREEN E. SCHNABEL

The chirostyloidean squat lobster genus Gastroptychus Caullery, 1896 is revised and is split into two genera: Gastroptychus sensu stricto (type species, Ptychogaster spinifer A. Milne-Edwards, 1880) and Sternostylus new genus (type species, Ptychogaster formosus Filhol, 1884). Gastroptychus sensu stricto, is restricted to nine species with a sternal plastron, at sternite 3, abruptly demarcated from the preceding sternites (excavated sternum) by a distinct step forming a well-defined transverse or concave anterior margin at the articulation with maxillipeds 3, the maxillipeds 3 widely separated, with the distal parts accommodated in the excavated sternum between the left and right maxillipeds 3 when folded, and the P2–4 dactyli with the terminal spine demarcated by a suture. Sternostylus new genus, represented by 12 species, has the sternite 3 anteriorly bluntly produced medially and steeply sloping anterodorsally to the anterior sternite, with a pair of spines directly behind the anterior margin, the left and right maxillipeds 3 adjacent, and the P2–4 dactyli ending in an indistinctly demarcated corneous spine. The above-mentioned characters of Gastroptychus are consistent with Chirostylidae sensu stricto. Published molecular phylogenies indicate, however, that Sternostylus is the sister group to all the other Chirostylidae, and is designated the type genus of a new family, Sternostylidae. 


1997 ◽  
Vol 28 (4) ◽  
pp. 471-492 ◽  
Author(s):  
Patricia Gentili ◽  
M. Alma Solis

AbstractOmiodes Guenée is redescribed based on all New World species, including the type species O. humeralis Guenée. Four new species from Costa Rica, O. janzeni sp. n., O. hallwachsae sp. n., O. sirena sp. n., O. ochracea sp. n., are described. Ten new synonymies are established : Phostria disciiridescens Hampson is =O. croeceiceps (Walker), Phostria cayennalis Schaus is =O. grandis (Druce), Omiodes ochrosoma Felder & Rogenhofer and Phryganodes gazalis Schaus are =O. pandaralis (Walker), Nacoleia lenticurvalis Hampson, Phryganodes anchoritalis Dyar, and Phostria duplicata Kaye are =O. confusalis (Dognin), O. cervinalis Amsel is =O. martvralis (Lederer), Nacoleia indicata ab. pigralis Dognin and Botis fortificalis Möschler are =O. metricalis (Möschler). One new combination is recognized: O. pandaralis (Walker) was transferred from Coelorhynchidia Hampson. A key and an updated checklist to the neotropical Omiodes species is provided, including O. indicata (Fabricius), a worldwide pest. Ten species that do not belong in Omiodes are retained until appropriate generic placements are identified.


Author(s):  
Anna Zhadan

Two new species of Cossura Webster & Benedict, 1887 were found in material collected during sampling from the terminal lobes of the Congo deep-sea fan. They were described using light and scanning electron microscopy. Cossura platypus sp. nov. has 15–17 thoracic chaetigers, a prostomium longer than it is wide, with a widely rounded anterior margin, an abruptly expanded posterior prostomial ring the same length as the peristomium, without a mid-ventral notch, a branchial filament attached to the midlength of chaetiger 3, and a pygidium with three anal cirri. Cossura platypus sp. nov. is similar to C. brunnea Fauchald, 1972 but differs in the shape of the prostomium, which is widely rounded anteriorly in C. platypus sp. nov. and is broadly triangular in C. brunnea; furthermore, C. platypus sp. nov.is uniformly pale, whereas C. brunnea has dark pigmentation. Cossura candida Hartman, 1955 differs from C. platypus sp. nov. in the conical shape of the prostomium and 24–35 thoracic chaetigers. Cossura flabelligera sp. nov. has 16–19 thoracic chaetigers, a conical prostomium, and a branchial filament arising from the posterior part of chaetiger 2; the entire body, including the chaetae, is covered by a thick mucous sheath similar to the tunic of flabelligerids. Cossura flabelligera sp. nov. resembles C. longocirrata Webster & Benedict, 1887 in the position of the branchial filament, the shape of the prostomium, and the number of thoracic chaetigers; it differs in having a thick mucous sheath. This character seems to be unique for the Cossuridae.


Zootaxa ◽  
2018 ◽  
Vol 4531 (4) ◽  
pp. 451
Author(s):  
DIEGO AGUILAR FACHIN ◽  
MARTIN HAUSER

The Neotropical genus Himantigera James in James & McFadden, 1982, is revised. Two new species are described and illustrated—H. amauroptera nov. sp. (Costa Rica, Panama, Colombia), and H. xanthopoda nov. sp. (Mexico, Nicaragua, Costa Rica). Three species are transferred from Himantigera to Sargus Fabricius, 1798—S. dichrous (Schiner, 1868) comb. nov., S. flavoniger Lindner, 1928 comb. rev. and S. fulvithorax (Bigot, 1879) comb. nov. One species is transferred to Microchrysa Loew, 1855—M. splendens (Schiner, 1868) comb. nov. Himantigera jamesi Lindner, 1969 syn. nov. is proposed as a junior synonym of H. superba Lindner, 1949. The type species H. silvestris McFadden, 1982, as well as H. nigrifemorata Macquart, 1847 and H. superba Lindner, are herein redescribed and illustrated. Photographs of the type specimens of these three species are provided. Two unnamed species of Himantigera (sp. A and sp. B) are also described given that they have slight differences, but because we had only one specimen of each species, we did not officially describe them. This updates the total number of extant Himantigera from eight sensu Woodley (2001) to seven species. The species Merosargus apicalis Lindner, 1935, although never referred to the genus Himantigera or Himantoloba McFadden 1970, is also transferred to the genus Sargus. A key to all species of Himantigera and a map expanding geographical distribution of the genus are also presented, with the first records of the genus for Nicaragua, Colombia, Venezuela, Trinidad and Tobago, Ecuador and Bolivia. 


Sign in / Sign up

Export Citation Format

Share Document