scholarly journals Formation and Change of Planetary Magnetic Field

2020 ◽  
Vol 8 (3) ◽  
pp. 61
Author(s):  
Cuixiang Zhong
2018 ◽  
Vol 27 (1) ◽  
pp. 183-231 ◽  
Author(s):  
Pablo Cuartas-Restrepo

Abstract This work seeks to summarize some special aspects of a type of exoplanets known as super-Earths (SE), and the direct influence of these aspects in their habitability. Physical processes like the internal thermal evolution and the generation of a protective Planetary Magnetic Field (PMF) are directly related with habitability. Other aspects such as rotation and the formation of a solid core are fundamental when analyzing the possibilities that a SE would have to be habitable. This work analyzes the fundamental theoretical aspects on which the models of thermal evolution and the scaling laws of the planetary dynamos are based. These theoretical aspects allow to develop models of the magnetic evolution of the planets and the role played by the PMF in the protection of the atmosphere and the habitability of the planet.


2018 ◽  
Vol 619 ◽  
pp. A165 ◽  
Author(s):  
A. J. Cridland

Here a physical model for terminating giant planet formation is outlined and compared to other methods of late-stage giant planet formation. As has been pointed out before, gas accreting into a gap and onto the planet will encounter the planetary dynamo-generated magnetic field. The planetary magnetic field produces an effective cross section through which gas is accreted. Gas outside this cross section is recycled into the protoplanetary disk, hence only a fraction of mass that is accreted into the gap remains bound to the planet. This cross section inversely scales with the planetary mass, which naturally leads to stalled planetary growth late in the formation process. We show that this method naturally leads to Jupiter-mass planets and does not invoke any artificial truncation of gas accretion, as has been done in some previous population synthesis models. The mass accretion rate depends on the radius of the growing planet after the gap has opened, and we show that so-called hot-start planets tend to become more massive than cold-start planets. When this result is combined with population synthesis models, it might show observable signatures of cold-start versus hot-start planets in the exoplanet population.


The paper shows that a planetary magnetic field expressed in the conventional form of a spherical harmonic expanson can be completely represented by the vector sum of fields produced by a set of magnetic dipoles with different magnetic moments, tilted from the planetary spin axis and offset from the planetary centre by different amounts. For convenience, the transformation from multipole systems to dipole systems is restricted to that from multipoles up to octupole to five dipoles. The scalar equipotential transformation analytically results in 24 equations; these can be subsequently solved for the 24 adjustable parameters in dipole systems with the predetermined ‘main dipole’. The numerical comparison of the jovian magnetic field between the jovian O 4 and the five-dipole models reveals a very good agreement with the subtle details. It is obvious that this type of transformation would open up the simplest practical way to simulate planetary magnetic fields with the dipole patterns.


2019 ◽  
Vol 488 (2) ◽  
pp. 2108-2120 ◽  
Author(s):  
Hilary Egan ◽  
Riku Jarvinen ◽  
Yingjuan Ma ◽  
David Brain

ABSTRACT Intrinsic magnetic fields have long been thought to shield planets from atmospheric erosion via stellar winds; however, the influence of the plasma environment on atmospheric escape is complex. Here we study the influence of a weak intrinsic dipolar planetary magnetic field on the plasma environment and subsequent ion escape from a Mars-sized planet in a global three-dimensional hybrid simulation. We find that increasing the strength of a planet’s magnetic field enhances ion escape until the magnetic dipole’s standoff distance reaches the induced magnetosphere boundary. After this point increasing the planetary magnetic field begins to inhibit ion escape. This reflects a balance between shielding of the Southern hemisphere from ‘misaligned’ ion pickup forces and trapping of escaping ions by an equatorial plasmasphere. Thus, the planetary magnetic field associated with the peak ion escape rate is critically dependent on the stellar wind pressure. Where possible we have fit power laws for the variation of fundamental parameters (escape rate, escape power, polar cap opening angle, and effective interaction area) with magnetic field, and assessed upper and lower limits for the relationships.


2009 ◽  
Vol 57 (14-15) ◽  
pp. 1706-1713 ◽  
Author(s):  
M.E. Burton ◽  
M.K. Dougherty ◽  
C.T. Russell

2017 ◽  
Vol 5 (9) ◽  
pp. 145-151
Author(s):  
Samir A Hamouda ◽  
Eman A. Alsslam Alfadeel ◽  
Mohamed Belhasan Mohamed

Gravity plays a major role in the planetary formation and the development of the solar system. Gravity attraction is the essence of a power that holds and governs the universe; it makes the planets in the solar system revolve around the sun and the moons around their planets. Magnetic fields are also an important phenomenon in the solar system and beyond. Their causes are complex and have a variety of effects on their surroundings; they have become a critical tool for the exploration of solar system bodies. However, the study of the mechanisms of planets formation in the solar system is a difficult problem made more so by the inability to construct planetary-scale models for laboratory study. However, understanding the nature of the matter comprising the Solar System is crucial for understanding the mechanism that generates planetary magnetic fields and planetary gravity. In this study, a brief history about the development of planetary gravity is presented. Some data about the physical properties of planets in the solar system are presented and discussed. However, much work is still needed before the planetary gravity and planetary magnetic field processes are fully understood and full advantage be taken of the implications of both phenomena  observations.


2020 ◽  
Vol 9 (2) ◽  
pp. 471-481
Author(s):  
Simon Toepfer ◽  
Yasuhito Narita ◽  
Daniel Heyner ◽  
Patrick Kolhey ◽  
Uwe Motschmann

Abstract. Minimum variance distortionless projection, the so-called Capon method, serves as a powerful and robust data analysis tool when working on various kinds of ill-posed inverse problems. The method has not only successfully been applied to multipoint wave and turbulence studies in the context of space plasma physics, but it is also currently being considered as a technique to perform the multipole expansion of planetary magnetic fields from a limited data set, such as Mercury's magnetic field analysis. The practical application and limits of the Capon method are discussed in a rigorous fashion by formulating its linear algebraic derivation in view of planetary magnetic field studies. Furthermore, the optimization of Capon's method by making use of diagonal loading is considered.


2010 ◽  
Vol 28 (8) ◽  
pp. 1467-1474 ◽  
Author(s):  
D. C. Delcourt ◽  
T. E. Moore ◽  
M.-C. H. Fok

Abstract. Because of the small planetary magnetic field as well as proximity to the Sun that leads to enhanced solar wind pressure as compared to Earth, the magnetosphere of Mercury is very dynamical and at times subjected to prominent compression. We investigate the dynamics of magnetospheric ions during such compression events. Using three-dimensional single-particle simulations, we show that the electric field induced by the time varying magnetic field can lead to significant ion energization, up to several hundreds of eVs or a few keVs. This energization occurs in a nonadiabatic manner, being characterized by large enhancements of the ion magnetic moment and bunching in gyration phase. It is obtained when the ion cyclotron period is comparable to the field variation time scale. This condition for nonadiabatic heating is realized in distinct regions of space for ions with different mass-to-charge ratios. During compression of Mercury's magnetosphere, heavy ions originating from the planetary exosphere may be subjected to such an abrupt energization, leading to loading of the magnetospheric lobes with energetic material.


Sign in / Sign up

Export Citation Format

Share Document