scholarly journals Research on the Ground Pressure Features of Long Wall Top Coal Caving Working Face in Extra-Thick Coal Seam

Author(s):  
Ma Zhanyuan ◽  
Liu Chuang ◽  
Li Huamin
Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Rui Gao ◽  
Jingxuan Yang ◽  
Tiejun Kuang ◽  
Hongjie Liu

The fracturing of hard roofs in different layers would result in complex ground pressure on the working face, such as supports collapsed and severe roadway deformation. However, the mechanism of the ground pressure induced by hard roof fracturing in different layers is still unclear. In the paper, a physical model of a 20 m extrathick coal seam mined with hard roofs existing was established based on the physical simulation similarity criterion. The overburden fracturing structure, abutment stress distribution, and failure characteristics of the coal body were monitored by a noncontact strain measurement system and resistance strain gauges, to reveal the mechanism of ground pressure induced by hard roof fracturing. Furthermore, on-site measurement was used to monitor and analyze the ground pressure affected by hard roofs in different levels. The results provide a theoretical basis for the control of ground pressure in extrathick coal seam mining with hard roofs.


2021 ◽  
Author(s):  
Chuang Liu ◽  
Huamin Li

Abstract In the process of longwall top coal caving, the selection of the top coal caving interval along the advancing direction of the working face has an important effect on the top coal recovery. To explore a realistic top coal caving interval of the longwall top coal caving working face, longwall top coal caving panel 8202 in the Tongxin Coal Mine is used as an example, and 30 numerical simulation models are established by using Continuum-based Distinct Element Method (CDEM) simulation software to study the top coal recovery with 4.0 m, 8.0 m, 12.0 m, 16.0 m, 20.0 m and 24.0 m top coal thicknesses and 0.8 m, 1.0 m, 1.2 m, 1.6 m and 2.4 m top coal caving intervals. The results show that with an increase in the top coal caving interval, the single top coal caving amount increases. The top coal recovery is the highest with a 0.8 m top coal caving interval when the thickness of the top coal is less than 4.0 m, and it is the highest with a 1.2 m top coal caving interval when the coal seam thickness is greater than 4.0 m. These results provide a reference for the selection of a realistic top coal caving interval in thick coal seam caving mining.


2011 ◽  
Vol 255-260 ◽  
pp. 3780-3785 ◽  
Author(s):  
Lei Yu ◽  
Zhi Zhong Fan ◽  
Gang Xu

The mine pressure behavior characters of shallow buried coal seam differed from both shallow seam mining and general depth seam. Mine pressure observation and numerical analysis were applied to research mine pressure behavior laws in fully mechanized face of shallow buried coal seam with thick bedrock and thin alluvium. It showed that the ground subsidence level phenomenon did not appear obviously although with obvious dynamic loading of fully mechanized face during the pressure period. The appearance was due to non-synchronized fracture from two key layers in the overlying rock layers and their interaction, which leaded to roof breaking initially and caving rocks with the form of an arch. Due to the periodic breaking and caving characteristics appearing as fully cut-down and arch alternately, the periodic pressure of shallow buried coal seam face showed as different size. The conclusion could be a reference for similar working face control.


2020 ◽  
Author(s):  
Zizheng Zhang ◽  
Jianbiao Bai ◽  
Xianyang Yu ◽  
Weijian Yu ◽  
Min Deng ◽  
...  

Abstract Gob-side entry retained with roadside filling (GER-RF) plays a key role in achieving coal mining without pillar and improving the coal resource recovery rate. Since there are few reports on the cyclic filling length of GER-RF, a method based on the stress difference method is proposed to determine the cyclic filling length of GER-RF. Firstly, a stability analysis mechanics model of the immediate roof above roadside filling area in GER was established, then the relationship between the roof stress distribution and the unsupported roof length was obtained by the stress difference method. According to the roof stability above roadside filling area based on the relationship between the roof stress and its tensile strength, the maximum unsupported roof length and rational cyclic filling length of GER-RF. Combined with the geological conditions of the 1103 thin coal seam working face of Heilong Coal Mine and the geological conditions of the 1301 thick coal seam working face of Licun Coal Mine, this suggested method was applied to determine that the rational cyclic filling lengths of GER-RF were 2.4 m and 3.2 m, respectively. Field trial tests show that the suggested method can effectively control the surrounding rock deformation along with rational road-in support and roadside support, and improve the filling and construction speed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chuang Liu ◽  
Huamin Li

AbstractIn the process of longwall top coal caving, the selection of the top coal caving interval along the advancing direction of the working face has an important effect on the top coal recovery. To explore a realistic top coal caving interval of the longwall top coal caving working face, longwall top coal caving panel 8202 in the Tongxin Coal Mine is used as an example, and 30 numerical simulation models are established by using Continuum-based Distinct Element Method simulation software to study the top coal recovery with 4.0 m, 8.0 m, 12.0 m, 16.0 m, 20.0 m and 24.0 m top coal thicknesses and 0.8 m, 1.0 m, 1.2 m, 1.6 m and 2.4 m top coal caving intervals. The results show that with an increase in the top coal caving interval, the single top coal caving amount increases. The top coal recovery is the highest with a 0.8 m top coal caving interval when the thickness of the top coal is 4.0 m, and it is the highest with a 1.2 m top coal caving interval when the coal seam thickness is greater than 4.0 m. These results provide a reference for the selection of a realistic top coal caving interval in thick coal seam caving mining.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Meng Zhang ◽  
Dan Fang

The high-efficiency paste backfilling mining technology of solid waste in thick coal seam above 6 m is a complex system engineering, which involves mining, backfilling, supporting, subsidence, safety, and other aspects, so it is of great strategic significance to study the technology. In this paper, on the basis of comprehensive research methods such as laboratory experiments, theoretical analysis, computer programming, and other comprehensive research methods, aiming at the problems of low production capacity and high paste backfilling cost, taking the mining of No. 3 Coal Seam under buildings in Lu’an area as the research object, the stress distribution law of high-efficiency paste backfilling working face with solid waste in more than 6-meter-thick coal seam was carried out. The main achievements are as follows: On the basis of the theoretical establishment of the program method for the instability discriminant analysis of roof rock beam failure with the change of backfilling body unit strength with time, a numerical calculation model considering the change process of backfilling body strength is established. The stress distribution analysis of the E1302 working face before and during the mining process plays a guiding role in the actual production of the whole working face and roadway. The research results support the sustainable development of coal mining enterprises from technology, which has great economic, social, and environmental benefits, and can promote the industrialization of green mining high-tech in Shanxi Province and even the whole country and can promote the green mining technology progress of paste backfilling in coal mines in China, which is of great significance to the sustainable development of mining production and environmental construction.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xingen Ma ◽  
Manchao He ◽  
Xuewei Sun ◽  
Jianfeng Li ◽  
Gang He ◽  
...  

Gob-side entry retaining technology with roof cutting (GERRC) has been widely used in flat and near-flat coal seam conditions, but its application under inclined coal seam is still very deficient. In order to further improve the application system of GERRC and overcome the application difficulties under special geological conditions, this paper takes the 43073 working face of Yixin coal mine as an example to research the GERRC with upper roadway under gently inclined thick coal seam. Firstly, the difficulties in the upper entry retaining with inclined coal seam are analyzed and the corresponding key technologies and system designs are put forward. Subsequently, the roof cutting and upper entry retaining are designed in detail according to geological conditions of test working face, and the roof cutting and pressure releasing effect is analyzed by numerical simulation to expound the stress distribution and pressure releasing mechanism of surrounding rock. Finally, the upper entry retaining field test is carried out to verify the feasibility and applicability of the technology and related designs. Through field monitoring, it is found that the weighting step increases significantly, the weighting strength decreases effectively on the roof cutting side, and the pressure relief effect is obvious. Meanwhile, the maximum roof to floor convergence is 361 mm and the maximum shrinkage of both sides is 280 mm, so the retained entry can meet the reuse requirement of adjacent working face.


Sign in / Sign up

Export Citation Format

Share Document