Quality Features of Metal Matrix Composite Castings

2013 ◽  
Vol 58 (3) ◽  
pp. 659-662 ◽  
Author(s):  
K. Gawdzińska

Abstract In this paper it is stated, that a set of quality features of metal matrix composite castings differs from the same set for castings of classic materials, although some features are common for both of these material groups. These features (pertaining to a set of quality characteristics of composite castings) have been named as specific, they have not been determined yet and a description of material quality should be performed (according to the qualitology) on a principle of description of quality characteristics of this product. Therefore, this set of features has been determined. It was proposed to add the following characteristics to the set of specific features of composite castings quality: matrix material, reinforcement material, binding between components and porosity of the composite casting. In this set a sub-set of quality characteristics of composite castings was also determined.

2021 ◽  
Vol 23 (10) ◽  
pp. 44-60
Author(s):  
M. Thayumanavan ◽  
◽  
K. RVijayaKumar ◽  

Among the various types of manufacturing process methods for discontinuous metal matrix composite, stir casting is the best suitable manufacturing process to fabricate particulate reinforced metal matrix composite. Its benefit is its simplicity, durability, and adaptability. The main issue in this process is proper wetting of reinforcement in aluminium matrix material. Only proper wetting results in a homogeneous dispersion of reinforcement material, and these homogeneous dispersions help to improve the properties of metal matrix composite material. The purpose of this paper was to discuss the outline of the stir casting process, process parameters, and the contribution effect of process parameters. This paper also presents about of the conditions should follow during the addition of reinforcement material and matrix material pouring in mould cavity. This paper also discusses the conditions that must be met during the addition of reinforcement material and matrix material pouring in the mould cavity. This paper also looked into the impact and contribution of stirring casting time, speed, and temperature in aluminium metal matrix composites, as well as processing issues in aluminium metal matrix composites, challenges, and research opportunities.


2019 ◽  
Vol 28 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Shashi Prakash Dwivedi ◽  
Garima Dwivedi

AbstractIn the present investigation, rice husk waste from rice mill was utilized in the development of aluminum based green metal matrix composite. Response surface methodology (RSM) was employed to develop green metal matrix composite by considering tensile strength as a response. Rice husk ash (RHA) was used as primary reinforcement material and B4C was used as a secondary reinforcement material in the development of composite. Microstructure results showed a uniform distribution of RHA and B4C in aluminum based matrix material. The optimum combination of reinforcement parameters was found to be RHA weight percentage of 7.8%, RHA preheats temperature of 231.12∘C, B4C preheats temperature of 435.24∘C and B4C wt.% of 6.67% respectively to achieve a tensile strength of 249.867 MPa.


2015 ◽  
Vol 766-767 ◽  
pp. 252-256 ◽  
Author(s):  
A. Siddique Ahmed Ghias ◽  
B. Vijaya Ramnath

The composite material is a combination of two or more materials with different physical and chemical properties. The composite has superior characteristics than those individual components. A hybrid composite is the one which contains at least three materials. When the matrix material is a metal, the composite is termed as metal matrix composites (MMC). The MMC is a composite material with two constituent parts, one being a metal. The other material may be another metal, ceramic or fiber. Among all the MMC’s, Aluminium is the most widely used matrix material due to its light weight, high strength and hardness. This paper deals with the fabrication and mechanical investigation of hybrid metal matrix composite Al - SiC. The fabrication is done by stir casting by adding the required quantities of additives into the stirred molten Aluminium. The results show significant effect of mechanical properties such as tensile strength, yield stress and flexural strength. The internal structure of the composite is observed using Scanning electron microscope (SEM) and found that are formation of pores in them.


2011 ◽  
Vol 264-265 ◽  
pp. 323-328 ◽  
Author(s):  
Taufik ◽  
Shamsuddin Sulaiman ◽  
T.A. Abdullah ◽  
Sivarao

Metal Matrix Composite (MMC) is produced normally by melting the matrix material in a vessel and the molten metal is stirred systematically to form a vortex, and then the reinforcement particles are introduced through the side of vortex formed. However, this approach has disadvantages, mainly arising from the particle addition and the stirring method. There is certainly local solidification of the melt induced by the particles during particle addition. This condition increases the viscosity of the slurry and appears as air pockets between the particles. Moreover, the rate of particle addition needs to be slowed down particularly when the volume fraction of the particles to used increases. This study proposes the new methodology of producing cast MMC by investment casting. Deformations of the die-wax and shell alloy systems are considered in a coupled manner, but the coupled deformation of the wax-shell system is not included. Therefore, this study presents the tasks pertaining to metal matrix composites and their interactions. As a result, the work on wax and wax-die interactions is discussed. This study presents the use of computer programs for determining the wax pattern dimensions based on three-dimensional finite-element simulations. The model for coupled thermal and mechanical analysis is developed by ProCAST. The wax model is described. The following factors are considered in the analysis: (1) the restraint due to geometrical features in the metal die; and (2) process parameters such as dwell time, die/platen temperature, injection pressure, and injection temperature.


In most of the engineering applications such as aviation, defence, marine and automotive requires components with light weight and along with favorable mechanical properties; this demand perhaps satisfied by metal matrix composites (MMCs) of aluminium by virtue of its distinguished achievement. Also MMCs suffer from insufficient process stability, in-adequate economic efficiency and reliability. In the present research work an experiment was developed to synthesize metal matrix composite adopting Aluminium Alloy (AA) 5083 as matrix material reinforced with graphite particulates (6 wt %, 8 wt % & 10 wt %) using two stage in-situ stir casting process. Experiments were implemented to analyze mechanical and tribological properties like ultimate tensile strength, microhardness, wear characteristics and corrosion properties. From the above investigations, it is revealed that microhardness increases with decrease in tensile strength with upsurge in more wt % of reinforcement. Due to the very high self-lubricating property of graphite significant reduction in wear can be observed with deepen in wt % of graphite. Also corrosion rate decreases with more amount of graphite particulate when compared with base matrix material.


2020 ◽  
Vol 12 (10) ◽  
pp. 1285-1288
Author(s):  
Ajay Biswas ◽  
Abhijit Bhowmik ◽  
Dipankar Dey ◽  
Akshar S. Vasekar

Application of composite materials are increasing remarkably because of its much advantage compared to base matrix alloys properties like reduced weight, increasing strength, increasing wear resistance capacity etc. Reinforcement particles play a very important role for preparing metal matrix composite and ultimately improve its properties. In the present experiment, Al6063 designated aluminium alloy is used as matrix material and borosilicate glass powder is used as reinforcement. Specimens are prepared by stir casting method. Borosilicate glass is collected from scientific laboratory scrap to support disposal as well as recycle of the waste glass materials. In order to reduce the experimental run, the design of experiment is incorporated as per Taguchi’s L9 orthogonal array. It is observed that glass reinforcement in Al6063 aluminium alloy is compatible to form metal matrix composite. Secondly, ultimate tensile strength of the composite increases in selected combination of grain size and weight ratio of the borosilicate glass powder to the metal matrix.


2013 ◽  
Vol 197 ◽  
pp. 180-185 ◽  
Author(s):  
Katarzyna Gawdzińska ◽  
Dorota Nagolska ◽  
Leszek Wojnar

The paper presents a proof, which has been made by analyzing technological process of tested materials, that a set of quality characteristics of metal composite castings has to be different from the set of quality characteristics of castings produced out of traditional materials. However, some characteristics are similar for both material groups. These characteristics (pertaining to a set of quality characteristics of composite castings) that have been named as specific, have not been determined before. The set of characteristics has been determined on the basis of material and technological conditions as well as on methodology of diagnosing the castings quality. Basing on the Ishikawa diagram, weights of individual quality characteristics have been set along with values for particular material and technological causal groups, i.e. management, human impact, methods of manufacturing and material of composite castings and manufacturing workstation.


Author(s):  
Padmavathi K R ◽  
Ramakrishnan R ◽  
Karthikeyan L ◽  
ChezhianBabu S

Researchers investigated the mechanical properties of Aluminium Metal Matrix Composites (AMMC) with several reinforcements and negligible work has been administered on analysing the mechanical characteristics of AMMC with rutile nanotitania reinforcement material. Metal matrix composite with Aluminium 6061 metallic element as matrix material and nanotitania as reinforcement with 0.5, 1.0, 1.5 and 2.0 weight percentages was fabricated through stir casting method followed by die casting and heat treatment. Consequent exploration on mechanical characteristics viz. micro hardness, tensile, compressive and impact strength were carried out. The fabricated samples were examined using scanning electron microscopy and analysed. The outcomes exhibited enhanced mechanical characteristics for 1.0 weight percentage nanotitania reinforced aluminium6061 metal matrix composite material.


2010 ◽  
Vol 643 ◽  
pp. 125-129 ◽  
Author(s):  
Tibério Andrade Passos ◽  
Rodinei Medeiros Gomes ◽  
Tadeu Antônio de Avezedo Melo ◽  
Severino Jackson Guedes de Lima

The use of quasicrystalline alloys as reinforcement material is due to the fact that they posses high hardness and low coefficient of friction. For this purpose was used compaction/extrusion equipment with which it was possible to observe a tendency toward increase in the mechanical strength from 72MPa (0% reinforcement) to 129Mpa (6% reinforcement).


Sign in / Sign up

Export Citation Format

Share Document