Evaluation of Subsurface Damage and Residual Stress of Glass Ceramic Under Grinding Process

2012 ◽  
Vol 8 (1) ◽  
pp. 484-488
Author(s):  
Y. C. Chen ◽  
G. J. Fan ◽  
C. Y. Chan ◽  
T. M. Huang
2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Jingfei Yin ◽  
Qian Bai ◽  
Bi Zhang

Abstract A silicon wafer is important for the electronic and computer industries. However, subsurface damage (SSD), which is detrimental to the performance and lifetime of a silicon chip, is easily induced in a silicon wafer during a grinding process since silicon is typically a hard and brittle material. Therefore, it is necessary to detect and remove SSD in the subsequent processes. In this study, a polarized laser scattering (PLS) system is installed to detect the SSD in a ground wafer. It is found that not only the subsurface crack but also the residual stress leads to depolarization of an incident light. The effects of residual stress on depolarization are studied. The residual stress results in the photoelasticity, which causes the depolarization of the incident light in the PLS system. The depolarization caused by the residual stress is determined by the directions and the difference of the principal stresses. When the polarization direction of the incident light is aligned with one of the principal stresses, the effects of the residual stress can be minimized; therefore, the subsurface crack can be quantitatively estimated by PLS.


2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


2013 ◽  
Vol 753-755 ◽  
pp. 277-280 ◽  
Author(s):  
Wei Xiang Liu

Nano-ceramic materials had high hardness and wear resistance. Combined with current technology and cost saving, nanostructured coatings technology were carried out, using HVOF ( high velocity oxygen fuel) or plasma spraying technique can obtain high quality ceramic coating on metal substrate. Ceramic coatings produced cracks in the grinding due to grinding surface residual stress. the coatings grinding surface residual stress of engineering ceramics have been researched, grinding surface residual stress in the nanostructured ceramic coatings are being researched. the researches in this field include grinding process modeling, abrasives and grinding parameters, grinding process monitoring and control and realization of the software, the grinding mechanism and grinding damage on the surface, grinding force prediction, on-line detection, grinding on nanocoating material is a multivariable complex process.


2010 ◽  
Vol 139-141 ◽  
pp. 269-273 ◽  
Author(s):  
Xiu Xu Zhao

Grinding is one of the important machining processes for the WC-Co carbide product. Different grinding strategies will have different impact on the work piece material. This study focuses on the WC-Co carbide grinding process, and the effect of grinding condition on the WC-Co carbide microstructure, figures out the relationship between different grinding strategies and material microstructure which relate to the WC-Co carbide tool failure. A specific microstructure analysis with Scanning Electric Microscope (SEM) will be presented based on a series of grinding experiments. The residual stress that generated in the grinding process will also be discussed based on the X-Ray Diffraction (XRD) measurements. It has been found that micro cracks are generated at certain grinding conditions with certain level. The residual stress which generated in the grinding process can be calculated by the d-spacing shift, and the comparison results show micro-cracks level is corresponding with the peaks shift in XRD test.


2013 ◽  
Vol 717 ◽  
pp. 215-220
Author(s):  
Li Ming Zhou ◽  
Wei Gong ◽  
En Ze Wang

A novel functionally gradient composite was reported in this article. The composite material are composed of plain low carbon steel Fe360 as a substrate and glass-ceramics containing ZrO2 reinforcing particles as a coating. Based on a mathematical model of the residual stress, the geometric model and finite element analysis models of the Fe360/glass-ceramic gradient coatings were established. The residual stress of the gradient layers was calculated with the commercial software ANSYS 10.0. The results showed that the differences of thermal expansion coefficient and shrinkage rate in each layer resulting from the difference of the volume fraction of ZrO2 in each gradient layer could make the surface layer generate suitable compressive stress. The maximum residual stress presents itself at the interface between the substrate and the gradient coatings. The layer numbers and the thickness of graded coatings have a significant effect on the residual stress.


2019 ◽  
Vol 19 (5) ◽  
pp. 570-581 ◽  
Author(s):  
Lixiang Zhang ◽  
Pei Chen ◽  
Tong An ◽  
Yanwei Dai ◽  
Fei Qin

2011 ◽  
Vol 681 ◽  
pp. 327-331 ◽  
Author(s):  
Sawsen Youssef ◽  
O. Calonne ◽  
Eric Feulvarch ◽  
P. Gilles ◽  
Hédi Hamdi

Grinding cup wheel is often used in the case of hand grinding which allows an important material removal rate but with secondary concern of surface integrity. Integrity is strongly affected by the process and consequently influences the surface behaviour in terms of resistivity to stress corrosion and crack initiation. This operation is difficult to master in terms of results on the surface and subsurface due to its manual nature. The paper presents results of an experimental study to investigate the residual stresses induced by this hand grinding process.


Sign in / Sign up

Export Citation Format

Share Document