A Three-Dimensional Nonlinear Back-Analysis Method for Rock Mass Mechanical Parameters in Large Underground Caverns

2012 ◽  
Vol 7 (1) ◽  
pp. 385-392
Author(s):  
Jiawen Zhou ◽  
Hongwei Zhou ◽  
Huige Xing ◽  
Hongtao Li
2014 ◽  
Vol 1020 ◽  
pp. 423-428 ◽  
Author(s):  
Eva Hrubesova ◽  
Marek Mohyla

The paper deals with the back analysis method in geotechnical engineering, that goal is evaluation the more objective and reliable parameters of the rock mass on the basis of in-situ measurements. Stress, deformational, strength and rheological parameters of the rock mass are usually determined by some inaccuracies and errors arising from the complexity and variability of the rock mass. This higher or lower degree of imprecision is reflected in the reliability of the mathematical modelling results. The paper presents the utilization of direct optimization back analysis method, based on the theory of analytical functions of complex variable and Kolosov-Muschelischvili relations, to the evaluation of initial stress state inside the rock massif.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


2014 ◽  
Vol 1079-1080 ◽  
pp. 266-271
Author(s):  
Wen Hui Tan ◽  
Zhong Hua Sun ◽  
Ning Li ◽  
Xiao Hong Jiang

The lithology of rock mass isnon-homogeneity,anisotropy, andexists size effect. The mechanical parameters of rock mass gotten by engineeringapproaches cannot reflect these properties. Therefore, a newmethod of determining the mechanical parameters of jointed rock mass isproposed: gneiss in Shuichang open-pit mine was selected as a case, thefracture system of the rock mass was measured and analyzed by non-contactmeasuring system of 3GSM and probabilisticmethod,the probability distributions of geometry parameters were analyzed and a 3Djoint geometry model was made by using the program of 3D network modeling.Cubes with different sizes were selected to be tested by tri-axial compressionof numerical simulation with 3DEC based on the 3D network model of joints,thus, the REV and its mechanical parameters were determined, which providedcredible parameters for slope stability analysis.


2012 ◽  
Vol 256-259 ◽  
pp. 207-210
Author(s):  
Chun Lai Qu ◽  
Ke Jiang ◽  
Min Xue ◽  
Zhao Cai Zhang

The mechanics parameters of a slope are difficult to determine accurately by conventional methods, because of weathering, fracture and excavation induced stress release. Based on the orthogonal test and three-dimensional numerical calculation to get the learning samples of displacement, By using the neural network method to obtain the relationship between the mechanical parameters and displacement, Combined with measurement results of deformation in the field mining, Obtained the reasonable strata parameters to provide the basis for slope treatment.


Sign in / Sign up

Export Citation Format

Share Document