Performance of Ultrasonic-Assisted Membrane Anaerobic System (UMAS) for Membrane Fouling Control in Palm Oil Mill Effluent (POME) Treatment

2017 ◽  
Vol 23 (5) ◽  
pp. 3903-3906 ◽  
Author(s):  
N. F. A Shafie ◽  
U. Q. A Mansor ◽  
A Yahya ◽  
A. M Som ◽  
A. H Nour ◽  
...  
2020 ◽  
Vol 36 ◽  
pp. 101350
Author(s):  
Ariffin Mohamad Annuar ◽  
Normi Izati Mat Nawi ◽  
Muhammad Roil Bilad ◽  
Juhana Jaafar ◽  
Lisendra Marbelia ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
S. Annop ◽  
P. Sridang ◽  
P. Chevakidagarn ◽  
K. Nopthavorn

The main objective was to compare the performances and the removal efficiencies of two biological treatment systems, a submerged membrane bioreactor (SMBR) and a simultaneous activated sludge (AS), for treating Palm Oil Mill Effluent (POME). Two lab scale units of SMBR and AS with a working volume of 24 L were operated under favorable biological conditions and minimized membrane fouling intensity. To achieve both carbonaceous and nitrogen removal, the cyclic air intermittent and dissolved oxygen control were performed into SMBR and AS with the influent flow rate about 16 L/d respectively. In terms of organic removal and membrane performance, the SMBR showed good removal efficiency to treat high strength wastewater with organic loading variation of POME. The average removal rates of TCOD, BOD, Turbidity, Color, Oil and Grease, NH3–N, TKN were 69±2, 76±2, 100±1, 37±21, 92±6, 67±4 and 75±10% respectively. Results pointed out the benefit of membranes retained totally the active compositions of biomass in each stage of development. The AS showed the limitation of sedimentation phase for sludge and oil separation. The characteristics of sludge in SMBR showed healthy floc formations and good settling after 240 h. The concentrations of COD and BOD in permeate were around 870±53 and 37±13 mg/L.


2015 ◽  
Vol 12 (2) ◽  
pp. 53
Author(s):  
Abdurrahman Hamid Nour ◽  
Asdarina Yahya ◽  
Amirah N. F. S. ◽  
Siti Natrah Abdul Rahman ◽  
Norasmah Mohammed Manshor ◽  
...  

Increasing demands in palm oil industry resulting in the increase in production palm oil. It is then creating a major problem in disposing the waste to be treated in appropriate ways. The governments are forced to look for alternative technology for the palm oil mill effluent (POME) treatment because the demand of oil increases with the awareness on increasing environmental issue. Therefore, a new technology must be found in order to reduce energy consumption, to meet legal requirements on emission and for cost reduction and also increased quality of water treatment. Membrane Anaerobic System (MAS) is a promising alternative way to overcome these issues. In this study, the efficiency of the MAS performance increases to 99. 03% in ten days operation. The application of Monod, Contois and Chen & Hashimoto models were used to analyze the performance of MAS for treating POME. The results from the experiment show the substrate removal model is well fits for estimation of kinetics membrane anaerobic system. Amongst them, the Contois and Monod models predicted the bio-kinetic reactions of the MAS very well with coefficient of determination (R2>97%) values. The MAS bioreactor was created to be an improvement method as well as successful biological treatment since the graph shows linearized which is in good agreement with reported in literature.


2015 ◽  
Vol 12 (2) ◽  
pp. 53
Author(s):  
Abdurahman Hamid Nour ◽  
Asdarina Yahya ◽  
N. F. S. Amirah ◽  
Siti Natrah Abdul Rahman ◽  
Norasmah Mohammed Manshor ◽  
...  

Increasing demands in palm oil industry resulting in the increase in production palm oil. It is then creating a major problem in disposing the waste to be treated in appropriate ways. The governments are forced to look for alternative technology for the palm oil mill effluent (POME) treatment because the demand of oil increases with the awareness on increasing environmental issue. Therefore, a new technology must be found in order to reduce ene-rgy consumption, to meet legal requirements on emission and for cost reduction and also increased quality of water treatment. Membrane Anaerobic System (MAS) is a promising alternative way to overcome these issues. In this study, the efficiency of the MAS performance increases to 99.03% in ten days operation. The application of Monod, Contois and Chen & Hashimoto models were used to analyze the performance of MAS for treating POME. The results from the experiment show the substrate removal model is well fits for estimation of kinetics membrane anaerobic system. Amongst them, the Contois and Monod models predicted the bio-kinetic reactions of the MAS very well with coefficient of determination (R2>97%) values. The MAS bioreactor was created to be an improvement method as well as successful biological treatment since the graph shows linearized which is in good agreement with reported in literature.


2019 ◽  
Vol 20 (1) ◽  
pp. 143 ◽  
Author(s):  
Widiatmini Sih Winanti ◽  
Prasetiyadi Prasetiyadi ◽  
Wiharja Wiharja

ABSTRACTPalm Oil Mill wastewater or POME is currently not fully utilized. POME waste treatment generally uses covered lagoon technology using the anaerobic system, which generally operates well in neutral waste conditions with a pH of 7 and uses mesophilic processes at temperatures around 35oC. So it is necessary to cool down and neutralize before POME is fed to the reactor, by mixing it with POME which has been degraded inside the reactor, where the pH condition has to turn into a base. It is useful to ensure that the POME temperature before being fed into the reactor is near the ambient temperature and the acidity of POME is near neutral (pH = 7). POME treatment using a covered lagoon reactor usually need 30 days residence time. The Fixed Bed anaerobic reactor is capable to treat waste with a low pH waste, so POME which has a pH of 4 does not need to be neutralized before treating using Fixed Bed Reactor. This will simplify the processing process, reduce investment costs and operating costs. The purpose of this research is to process POME waste using an anaerobic type Fixed Bed reactor without neutralization stage. The method processing using Fixed Bed type reactor is divided into two stages of a process that is bacteria inoculation process and POME waste adaptation process. The results of the research can reduce the HRT to 2o days, with optimal POME feeding at 150 liters/day. The percentage of methane gas measured was 66%. The methane gas yield is 0.52 liters/gram of COD or greater than the results of using the covered lagoon, which is 0.35 liters/ gram COD.Key word: Palm Oil Mill Effluent (POME), anaerobic, Fixed Bed, biogas, neutralizationABSTRAKLimbah cair industri minyak kelapa sawit atau POME saat ini belum dimanfaatkan secara maksimal. Pengolahan limbah POME umumnya menggunakan teknologi covered lagoon dengan sistem anaerobik, dimana umumnya teknologi ini beroperasi baik pada kondisi limbah yang netral dengan pH 7 dan menggunakan proses mesopilik pada suhu sekitar 35oC.  Sehingga diperlukan tahap pendinginan dan tahap netralisasi terlebih dahulu sebelum POME diumpankan ke reaktor, yaitu dengan mencampurkannya dengan POME yang sudah terdegradasi di dalam reaktor, karena sifatnya  sudah berubah menjadi basa. Hal ini berguna untuk memastikan bahwa suhu POME sebelum masuk reaktor sudah mendekati suhu lingkungan dan tingkat keasaman POME sudah mendekati netral (pH =7). Pengolahan POME menggunakan covered lagoon umumnya memerlukan waktu tinggal di dalam reaktor(HRT) sekitar 30 hari. Reaktor anaerobik tipe Fixed Bed mampu mengolah limbah dengan pH rendah, sehingga POME yang mempunyai pH 4, tidak perlu dinetralkan terlebih dahulu. Hal ini akan menyederhanakan proses pengolahan, menurunkan biaya investasi dan biaya operasi. Tujuan penelitian ini adalah mengolah limbah POME dengan menggunakan reaktor anaerobik tipe Fixed Bed tanpa tahap proses netralisasi. Metode pengolahan anaerobik dengan menggunakan reaktor tipe Fixed Bed, terbagi menjadi dua tahapan proses yaitu proses inokulasi bakteri dan proses adaptasi limbah POME. Hasil penelitian dapat menurunkan HRT menjadi 20 hari, dengan pengumpanan POME optimal pada 150 liter/hari. Persentase gas metana adalah 66%. Hasil produksi gas metana adalah 0,52 liter/gram COD atau lebih besar dari hasil proses menggunakan covered lagoon, yaitu 0,35 liter/ gram COD.Kata Kunci: Palm Oil Mill Effluent (POME), anaerobik, Fixed Bed, biogas, netralisasi


2021 ◽  
Vol 84 (1) ◽  
pp. 107-115
Author(s):  
Erna Yuliwaty ◽  
Ahmad Fauzi Ismail ◽  
Goh Pei Sean ◽  
Sri Martini

A polyvinylidene fluoride-based mixed matrix membrane (PVDF- MMM) has been developed to treat palm oil mill effluent (POME). The addition of TiO2 into PVDF membrane was conducted. Hollow fibers were spun from a dope solution containing PVDF/PVP 30K/DMAc/additives by using a dry-jet wet spinning process at different air gaps. AFM image demonstrated that wet spun hollow fiber had a rougher outer surface than that of dry-jet wet spun fibers and exhibited symmetric cross-section structure. Experimental results showed that hydrophilicity of membranes increased with adding of TiO2 particles and the varied air gap length influenced the characteristic of membrane pore size and outer membrane surface roughness. In addition, aeration could increase the turbulence and flux and reduce membrane fouling. The values of flux and suspended solids removal were 92.04 L/m2.hr and 94.86 %, respectively, with the varied aeration flow rate of 2.0, 3.0 and 4.0 mL/min and bubble size distribution of 4.0 µm. Overall, this study has proven that PVDF-based MMM could achieve expected performance for POME treatment.


Sign in / Sign up

Export Citation Format

Share Document