Study on the Antipyretic Mechanism of Baihu Decoction: Network Pharmacology Prediction and Experimental Verification

2021 ◽  
Vol 15 (3) ◽  
pp. 334-341
Author(s):  
Jiahang Zuo ◽  
Hongbo Ye ◽  
He Lin ◽  
Guangfu Lv ◽  
Yuchen Wang ◽  
...  

To better understand the antipyretic mechanism of Baihu decoction, the network pharmacology was used to predict its antipyretic components, targets, functions and pathways, and the prediction results were experimentally verified. BATMAN-TCM was used to obtain the components of Baihu decoction, GeneCards was used to screen fever related targets, STRING was used to analyze the protein interaction network of the selected targets. Bioconductor software was used to analyze the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway, and one of the KEGG pathway analyses was performed by cell inflammation model, and was verified by experiments. In the results, total 263 compounds were screened out, 54 potential antipyretic targets were identified, 84 items were obtained by GO function analysis, and 29 pathways were obtained by KEGG analysis, including hypoxia inducible factor-1, Forkhead box O (FOXO) Ras related protein 1 (Rap1), nuclear factor-κ (NF-κB) and other signalling pathways. In the verification experiment of NF-κB signalling pathway, the expression of NF-κB, Inhibitory kappa B kinase beta (IκKβ) and IκBα protein were significantly difference between the Baihu decoction group (P < 0.01) and the model group (P < 0.05), suggesting that Baihu decoction plays the antipyretic effect by affecting IκKβ, Inhibitory kappa B alpha (IκBα) and NF-κB. In conclusion, the interaction of multiple targets in the antipyretic effect of Baihu Decoction and its biological function and pathways were preliminarily demonstrated.

2020 ◽  
Author(s):  
Lin Xu ◽  
Jiaqi Zhang ◽  
Zedan Zhang ◽  
Yifan Wang ◽  
Fengyun Wang ◽  
...  

Abstract Background and objective: Ge-Gen-Qin-Lian Decoction (GGQLD), a traditional Chinese medicine (TCM) formula, has been widely used for ulcerative colitis (UC) in China while the pharmacological mechanisms still remain unclear. The present research was designed to clarify the underlying mechanism of GGQD against UC. Methods: In this research, a GGQLD-compound-target-UC (G-U) network was constructed based on public databases to clarify the relationship between active compounds in GGQLD and potential targets. GO and KEGG pathway enrichment analyses were performed to investigate biological functions associated with potential targets. A protein-protein interaction network was constructed to screen and evaluate hub genes and key active ingredients, another GO and KEGG pathway analyses were subsequently performed on hub genes. Molecular docking was used to verify the activities of binding between hub targets and ingredients. Results: Finally, 83 potential therapeutic targets and 118 correspond active ingredients were obtained by network pharmacology. GO and KEGG enrichment analysis revealed that GGQLD had an effect of anti-inflammation, antioxidation, and immunomodulatory. The effect of GGQLD on UC might be achieved by regulating the balance of cytokines (eg., IL6, TNF, IL1β, CXCL8, CCL2, IL10, IL4, IL2) in immune system and inflammation-related pathways, such as IL-17 pathway and Th17 cell differentiation pathway. Besides, molecular docking results demonstrated that the main active ingredients, quercetin, exhibited good affinity to hub targets. Conclusion: This research fully reflects the characteristics of multi-component and multi-target for GGQLD in the treatment of UC. Furthermore, the present study provided new insight into the mechanisms of GGQLD against UC.


2019 ◽  
Vol 14 (10) ◽  
pp. 1934578X1988307
Author(s):  
Wen-Ping Xiao ◽  
Yan-Fang Yang ◽  
He-Zhen Wu ◽  
Yi-yi Xiong

Yanhusuo (Corydalis Rhizoma) extracts are widely used for the treatment of pain and inflammation. The effects of Yanhusuo in pain assays were assessed in a few studies. However, there are few studies on its analgesic mechanism. In this paper, network pharmacology was used to explore the analgesic components of Yanhusuo and its analgesic mechanism. The active components of Yanhusuo were screened by TCMSP database, combined with literature data. PharmMapper and GeneCards databases were used for screening the analgesic targets of the components. The protein interaction network diagram was drawn by String database and Cytoscape software, the gene ontology and KEGG pathway analyses of the target were performed by DAVID database, and the component–target–pathway interaction network diagram was further drawn by Cytoscape3.6.1 software. System Dock Web Site verified the molecular docking among components and targets. Finally, an interaction network of the component–target–pathway of Yanhusuo was constructed, and the functions and pathways were analyzed for preliminarily investigating the mechanism of Yanhusuo in analgesia. The results showed that the active components of analgesic in Yanhusuo were Corynoline, 13-methylpalmatrubine, dehydrocorydaline, saulatine, 2,3,9,10-tetramethoxy-13-methyl-5,6-dihydroisoquinolino[2,1-b]isoquinolin-8-on-e, and Capaurine. The mechanisms were involved in metabolic pathways, PI3k-Akt signaling pathway, pathways in cancer, and so on. The top 3 targets were NOS3, glucose-6-phosphate dehydrogenase, and glucose-6-phosphate isomerase in components-target-pathways network, and they were all enriched in metabolic pathways. Meanwhile the molecular docking showed that there was a high binding activity between the 6 components and the important target proteins, as a further certification for the subsequent network analysis. This study reveals the relationship of the components, targets, and pathways of active components in Yanhusuo, and provides new ideas and methods for further research on the analgesic mechanism of Yanhusuo.


2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199171
Author(s):  
ZiXin Yuan ◽  
Can Zeng ◽  
Bing Yu ◽  
Ying Zhang ◽  
TianShun Wang ◽  
...  

To investigate the mechanism of action of components of Yinma Jiedu granules in the treatment of coronavirus disease 2019 (COVID-19) using network pharmacology and molecular docking. The main chemical components of Yinma Jiedu granules were collected in the literature and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database. Using the SwissTargetPrediction database, the targets of the active component were identified and further correlated to the targets of COVID-19 through the GeneCards database. The overlapping targets of Yinma Jiedu granules components and COVID-19 were identified as the research target. Using the Database for Annotation, Visualization and Integrated Discovery database to carry out the target gene function Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation and Cytoscape 3.6.1 software was used to construct a “component-target-pathway” network. The protein-protein interaction network was built using Search Tool for the Retrieval of Interacting Genes/Proteins database. Using Discovery Studio 2016 Client software to study the virtual docking of key protein and active components. One hundred active components were screened from the Yinma Jiedu Granules that involved 67 targets, including mitogen-activated protein kinase 3 (MAPK3), epidermal growth factor receptor, tumor necrosis factor, tumor protein 53, and MAPK1. These targets affected 109 signaling pathways including hypoxia-inducible factor-1, apoptosis, and Toll-like receptor signaling pathways. Molecular docking results showed that the screened active components have a strong binding ability to the key targets. In this study, through network pharmacology and molecular docking, we justified the multicomponent, multitarget, and multipathways of Yinma Jiedu Granules in the treatment of COVID-19.


2020 ◽  
Author(s):  
Shuai He ◽  
Chufeng Gu ◽  
Tong Su ◽  
Chuandi Zhou ◽  
Thashi Lhamo ◽  
...  

Abstract Background: The Lingqihuangban Granule (LQHBG), a remarkable Chinese herbal compound, has been used for decades to treat diabetic retinopathy (DR) in Department of Ophthalmology, Shanghai General Hospital (National Clinical Research Center for Eye Diseases) with obvious effects. Through the method of network pharmacology, the present study constructed bioactive component-relative targets and protein-protein interaction network of the LQHBG and implemented gene function analysis and pathway enrichment of targets, discussing the mechanisms of traditional Chinese medicine LQHBG in treating DR. Materials and methods: The bioactive ingredients of LQHBG were screened and obtained using TCMSP and ETCM databases, while the potential targets of bioactive ingredients were predicted by SwissTargetPrediction and ETCM databases. Compared with the disease target databases of TTD, Drugbank, OMIM and DisGeNET, the therapeutic targets of LQHBG for DR were extracted. Based on DAVID platform, GO annotation and KEGG pathway analyses of key targets were explored, combined with the screening of core pathways on Omicshare database and pathway annotation on Reactome database. Results: A total of 357 bioactive components were screened from LQHBG, involving 86 possible targets of LQHBG treating DR. In PPI network, INS and ALB were identified as key genes. The effective targets were enriched in multiple signaling pathways, such as PI3K/Akt and MAPK pathways. Conclusion: This study revealed the possible targets and pathways of LQHBG treating DR, reflecting the characteristics of multicomponent, multitarget and multipathway treatment of a Chinese herbal compound, and provided new ideas for further discussion.


2007 ◽  
Vol 43 ◽  
pp. 105-120 ◽  
Author(s):  
Michael L. Paffett ◽  
Benjimen R. Walker

Several molecular and cellular adaptive mechanisms to hypoxia exist within the vasculature. Many of these processes involve oxygen sensing which is transduced into mediators of vasoconstriction in the pulmonary circulation and vasodilation in the systemic circulation. A variety of oxygen-responsive pathways, such as HIF (hypoxia-inducible factor)-1 and HOs (haem oxygenases), contribute to the overall adaptive process during hypoxia and are currently an area of intense research. Generation of ROS (reactive oxygen species) may also differentially regulate vascular tone in these circulations. Potential candidates underlying the divergent responses between the systemic and pulmonary circulations may include Nox (NADPH oxidase)-derived ROS and mitochondrial-derived ROS. In addition to alterations in ROS production governing vascular tone in the hypoxic setting, other vascular adaptations are likely to be involved. HPV (hypoxic pulmonary vasoconstriction) and CH (chronic hypoxia)-induced alterations in cellular proliferation, ionic conductances and changes in the contractile apparatus sensitivity to calcium, all occur as adaptive processes within the vasculature.


2020 ◽  
Author(s):  
Lungwani Muungo

Tumor hypoxia and hypoxia-inducible factor 1 (HIF-1) activationare associated with cancer progression. Here, we demonstrate thatthe transcription factor TAp73 opposes HIF-1 activity through anontranscriptional mechanism, thus affecting tumor angiogenesis.TAp73-deficient mice have an increased incidence of spontaneousand chemically induced tumors that also display enhanced vascularization.Mechanistically, TAp73 interacts with the regulatory subunit(α) of HIF-1 and recruits mouse double minute 2 homolog intothe protein complex, thus promoting HIF-1α polyubiquitination andconsequent proteasomal degradation in an oxygen-independentmanner. In human lung cancer datasets, TAp73 strongly predictsgood patient prognosis, and its expression is associated with lowHIF-1 activation and angiogenesis. Our findings, supported by invivo and clinical evidence, demonstrate a mechanism for oxygenindependentHIF-1 regulation, which has important implicationsfor individualizing therapies in patients with cancer.


Sign in / Sign up

Export Citation Format

Share Document