Preparation of Eco-Friendly Acidic Corrosion Inhibitors from Ilex Chinensis Sims Leaves

2021 ◽  
Vol 15 (4) ◽  
pp. 472-477
Author(s):  
Qianlong Wang ◽  
Ruquan Zhang ◽  
Liyuan Zhang ◽  
Minlan Gao ◽  
Weichao Du ◽  
...  

Preparing chemicals from natural product is a simple way to green chemistry. May flavonoids and protocatechuic acid have been found in Ilex Chinensis Sims leaves extracts, which indicates its extracts suitable to be used as an effective corrosion inhibitor. Extracts of Ilex Chinensis Sims leaves (HE) were modified with hydroxymethylation reaction and Mannich reaction to produce the relative stable green acidic corrosion inhibitors (HM1 and HM2). The extracts of Ilex Chinensis Sims leaves and the modified samples were investigated on the corrosion inhibition of A3 steel accordingly. The results show that these inhibitors have effective corrosion inhibition effect on A3 steel. The HM2 are the most effective for corrosion inhibition, and the inhibition efficiency can reach to 78.36%. At 60 °C, the corrosion inhibition efficiency of these three extracts is HM2 > HM1 > HE. And the extracts inhibit corrosion mainly by adsorption mechanism. This adsorption accords with Langmuir adsorption isotherm.

2019 ◽  
Vol 814 ◽  
pp. 499-504
Author(s):  
Ren Jun Xu ◽  
Hua Lei He ◽  
Ying Li Tang ◽  
Min Lan Gao ◽  
Hai Peng Hui ◽  
...  

Ligustrum vulgare is an evergreen tree. The leaves are opposite, glossy dark green, 6–17 centimetres (2.4–6.7 in) long and 3–8 centimetres (1.2–3.1 in) broad. The ligustrum vulgare leaves contain two main components, one of which is oleanolic acid and the other is p-hydroxyphenylethanol which indicates its extracts suitable to be used as an effective corrosion inhibitor. Extracts of ligustrum vulgare leaves (PE) were modified with hydroxymethylation reaction (PM1) and Mannich reaction (PM2) to produce the relative stable green acidic corrosion inhibitors. The extracts of ligustrum vulgare leaves have been investigated on the corrosion inhibition of A3 steel with weight loss. The results show that these inhibitors have good corrosion inhibition effect on A3 steel. The PM2 are the most effective for corrosion inhibition, and the inhibition efficiency can reach 75.95%. When the temperature is 60°C, the corrosion inhibition rate of PE, PM1, PM2 is only 24.46%, 42.35% and 39.35% respectively which can not effectively prevent the corrosion of the metal. And the extracts inhibit corrosion mainly by adsorption mechanism. This adsorption accords with Langmuir adsorption isotherm.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zainal Alim Mas’ud ◽  
Noviyan Darmawan ◽  
Januari Dawolo ◽  
Yusuf Bramastya Apriliyanto

The development of green and sustainable corrosion inhibitors for copper in a corrosive marine environment is highly desired. Herein, we studied the fatty acid-based amidine as the new type of renewable corrosion inhibitor. Stearamidine salt was used as a model inhibitor, and it was synthesized through stearonitrile intermediate with an excellent isolated yield of 88%. We used electrochemical (potentiodynamic polarization) and morphological (scanning electron microscopy) measurements to assess the corrosion inhibition efficiency of stearamidine in 3.0 wt.% NaCl at 300 K. We show that, in such a condition, the optimum inhibition efficiency of 96% was achieved using only 0.2 mM stearamidine. The results suggested the fatty amidine is a promising corrosion inhibitor for copper that is suitable in the saltwater ecosystem. The thermodynamic parameters of the interaction between the stearamidine and the copper surface were determined, and the result suggests that the adsorption process occurred accordingly with the Langmuir adsorption isotherm and involved both physisorption and chemisorption.


2017 ◽  
Vol 41 (21) ◽  
pp. 13114-13129 ◽  
Author(s):  
Neeraj Kumar Gupta ◽  
Chandrabhan Verma ◽  
R. Salghi ◽  
H. Lgaz ◽  
A. K. Mukherjee ◽  
...  

Phosphorus containing compounds have been evaluated by experimental and theoretical techniques and more than 96% corrosion inhibition efficiency was observed at 200 ppm concentration.


2011 ◽  
Vol 347-353 ◽  
pp. 542-546
Author(s):  
Qun Jie Xu ◽  
Xian Qin Deng ◽  
Wen Li

The corrosion inhibition of brass in simulated cooling water by complex of triethanolamine (TEA) and Na2WO4 had been investigated by means of electrochemical (AC impedance and dc polarization) techniques. The results indicated that both TEA and Na2WO4 were able to inhibit the corrosion of brass in simulated cooling water. TEA showed the best inhibition effect for brass corrosion at the TEA concentration of 30 mg/L, and the inhibition efficiency was 45.35%. At the total inhibitor concentration of 20 mg/L, the complex of TEA and Na2WO4 had a good synergistic effect, and the optimum ratio of TEA to Na2WO4 is 1:9, corrosion inhibition efficiency was 89.08%.


2006 ◽  
Vol 2 (2) ◽  
pp. 82-90
Author(s):  
Petchiammal A.p ◽  
P.Deepa Rani ◽  
S.Seetha Laks ◽  
S. Selvaraj

The inhibition effect of Cassia alata leaves extract on corrosion of mild steel in 1N HCl was investigated through mass loss measurements with various time and temperature. The observed result indicated that the corrosion inhibition efficiency and degree of surface coverage were increased with increase of inhibitor concentration and temperature. The thermodynamic parameters (Ea, ∆Hads, ∆Gads, ∆Sads) were evaluated for corrosion inhibition process which suggests that the adsorption is endothermic, spontaneous and chemisorptions and also the inhibitor follows Langmuir adsorption isotherm. The protective film formed on metal surface was analyzed using spectroscopic studies viz, UV, FT-IR and EDX techniques.


This paper presents the results of an experimental investigation carried out to study the effect of surface applied organic and inorganic corrosion inhibitors on reinforced steel in concrete. The reinforcement bars were coated with Neem powder (organic inhibitor) and Zinc powder (inorganic inhibitor) as corrosion inhibitors. The samples of beams of size 100X100X640mm having 4 steel bars as reinforcement were prepared and cured in normal water for 15 days and in saline environment for 42 days. The inhibitors were applied in the form of 2 coats, 4 coats and blend of both. The grade of concrete used was M30. Half-cell Potential and Weight loss measurements were carried out to determine the efficiency of corrosion inhibitors [11]. The corrosion inhibition efficiency of controlled specimen and coated specimens were compared. From the results it was seen that samples with 4 coats of Neem showed 44% inhibition efficiency as compared to control specimens. Similarly specimens with two coats of Neem, four coats of Neem and Zinc also showed better corrosion inhibition efficiency. Highest weight loss was observed in case of control specimen. The study concludes that use of surface applied corrosion inhibitors prove efficient in enhancing the corrosion inhibition efficiency of concrete. Surface applied corrosion inhibitors provide protective layer to the reinforcement thereby protecting it from corrosion and increasing the durability of the structure. This type of technique of using corrosion inhibitors in concrete can be used in various structures such as buildings, bridges, sewage pipes, marine structures, abutments & piers, RCC roads which are subjected to harsh environmental conditions.


2020 ◽  
Vol 25 (4) ◽  

Compositions based on hydroxyethylidene diphosphonic and nitrilotrimethylenephosphonic acids with alkali earth metals (Ca, Mg) are studied as corrosion inhibitors. It is found that the studied compositions are not inferior to their zinc counterparts as regards their corrosion inhibition efficiency and can be used in two-circuit cooling systems.


2011 ◽  
Vol 8 (2) ◽  
pp. 671-679 ◽  
Author(s):  
D. Nalini ◽  
R. Rajalakshmi ◽  
S. Subhashini

A heterocyclic imidazoline, 3,4,5-trimethoxyphenyl-2-imidazolines (TMP2I) was tested for its corrosion inhibition in 0.5 M H2SO4and 1 M HCl using weight loss, Tafel polarisation and electrochemical impedance techniques. The results show that the inhibition efficiency increases with the increase in concentration of TMP2I and the higher efficiency of about 98% is obtained in both the acid media at 20 ppm. The adsorption of TMP2I obeys Langmuir adsorption isotherm and occurs spontaneously. Cathodic and anodic polarization curves of mild steel in the presence of different concentrations of TMP2I at 300C reveal that it is a mixed type of inhibitor. Electrochemical impedance studies reveal that the system follows mixed mode of inhibition. The surface morphology of the mild steel specimens was evaluated using SEM images


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Mahmoud Abbas Ibraheem ◽  
Abd El Aziz El Sayed Fouda ◽  
Mohamed Talaat Rashad ◽  
Fawzy Nagy Sabbahy

Corrosion inhibition and adsorption behavior of two triazole derivatives on API 5L-B carbon steel in CO2-saturated 3.5% NaCl solutions was investigated using potentiodynamic polarization, EIS, and EFM techniques. Specimen surfaces were characterized using SEM, EDX, and XRD. Results show that the two compounds are mixed-type inhibitors and inhibition efficiency increases with increasing concentrations. Adsorption of the two compounds chemisorption and obeys Langmuir adsorption isotherm. Activation energy and thermodynamic parameters were calculated. Surface analyses confirm the formation of iron nitrides on the metal surface which supports results obtained from previous techniques.


Sign in / Sign up

Export Citation Format

Share Document