Magnetic Bead Adsorption Extraction of Xyloglucan Endoglucosidase/Hydrolase Gene and Its Expression Analysis in Land Cotton

2021 ◽  
Vol 15 (4) ◽  
pp. 478-490
Author(s):  
Xianliang Li ◽  
Hang Liu ◽  
Zhichang Zhao

The xyloglucan Endotransglucosylase/hydrolase (XTH) genes are proposed to encode enzymes responsible for cleaving and reattaching xyloglucan polymers. Despite prior identification of the XTH gene family in Arabidopsis and rice, the XTH family in upland cotton, a tetraploid plant whose fiber cell is an excellent model for the study of plant cell elongation, is yet uncharacterized. In this study, iron tetroxide based magnetic nanobead (Fe3O4 NPs) was successfully prepared and applied to extract xyloglucan endoglucosidase/hydrolase genes. Analysis of the genes can provide insight into the evolutionary significance and function of the XTH gene family. A total of 41 XTH genes found by searching the phytozomev 10 database were classified into three groups based on their phylogeny and the motifs of individual genes. The 25 and 5 GhXTH genes occurred as clusters resulting from the segmental and tandem duplication. More frequent duplication events in cotton contributed to the expansion of the family. Global microarray analysis of GhXTH gene expression in cotton fibers showed that 18 GhXTH genes could be divided into two clusters and four subclusters based on their expression patterns. Accumulated expression levels were relatively high at the elongation stages of the cotton fibers, suggesting that cotton fiber elongation requires high amounts of the GhXTH protein. The expression profiles of GhXTH3 and GhXTH4 showed by quantitative realtime PCR were similar to those determined by microarray. Additionally, the expression levels of GhXTH3 and GhXTH4 in Gossypium barbadense were higher than those in Gossypium hirsutum at developmental stages, indicating that expression levels of GhXTH3 and GhXTH4 in fibers varied among cultivars differing in fiber length.

2019 ◽  
Vol 20 (13) ◽  
pp. 3235 ◽  
Author(s):  
Yanguo Ke ◽  
Farhat Abbas ◽  
Yiwei Zhou ◽  
Rangcai Yu ◽  
Yuechong Yue ◽  
...  

Auxin plays a key role in different plant growth and development processes, including flower opening and development. The perception and signaling of auxin depend on the cooperative action of various components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play an imperative role. In a recent study, the entire Aux/IAA gene family was identified and comprehensively analyzed in Hedychium coronarium, a scented species used as an ornamental plant for cut flowers. Phylogenetic analysis showed that the Aux/IAA gene family in H. coronarium is slightly contracted compared to Arabidopsis, with low levels of non-canonical proteins. Sequence analysis of promoters showed numerous cis-regulatory elements related to various phytohormones. HcIAA genes showed distinct expression patterns in different tissues and flower developmental stages, and some HcIAA genes showed significant responses to auxin and ethylene, indicating that Aux/IAAs may play an important role in linking hormone signaling pathways. Based on the expression profiles, HcIAA2, HcIAA4, HcIAA6 and HcIAA12, were selected as candidate genes and HcIAA2 and HcIAA4 were screened for further characterization. Downregulation of HcIAA2 and HcIAA4 by virus-induced gene silencing in H. coronarium flowers modified the total volatile compound content, suggesting that HcIAA2 and HcIAA4 play important roles in H. coronarium floral scent formation. The results presented here will provide insights into the putative roles of HcIAA genes and will assist the elucidation of their precise roles during floral scent formation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kai-Lu Zhang ◽  
Jian-Li Zhou ◽  
Jing-Fang Yang ◽  
Yu-Zhen Zhao ◽  
Debatosh Das ◽  
...  

As a pivotal regulator of 5’ splice site recognition, U1 small nuclear ribonucleoprotein (U1 snRNP)-specific protein C (U1C) regulates pre-mRNA splicing by interacting with other components of the U1 snRNP complex. Previous studies have shown that U1 snRNP and its components are linked to a variety of diseases, including cancer. However, the phylogenetic relationships and expression profiles of U1C have not been studied systematically. To this end, we identified a total of 110 animal U1C genes and compared them to homologues from yeast and plants. Bioinformatics analysis shows that the structure and function of U1C proteins is relatively conserved and is found in multiple copies in a few members of the U1C gene family. Furthermore, the expression patterns reveal that U1Cs have potential roles in cancer progression and human development. In summary, our study presents a comprehensive overview of the animal U1C gene family, which can provide fundamental data and potential cues for further research in deciphering the molecular function of this splicing regulator.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing Ma ◽  
Jia-xi Dai ◽  
Xiao-wei Liu ◽  
Duo Lin

Abstract Background BBX transcription factors are a kind of zinc finger transcription factors with one or two B-box domains, which partilant in plant growth, development and response to abiotic or biotic stress. The BBX family has been identified in Arabidopsis, rice, tomato and some other model plant genomes. Results Here, 24 CaBBX genes were identified in pepper (Capsicum annuum L.), and the phylogenic analysis, structures, chromosomal location, gene expression patterns and subcellular localizations were also carried out to understand the evolution and function of CaBBX genes. All these CaBBXs were divided into five classes, and 20 of them distributed in 11 of 12 pepper chromosomes unevenly. Most duplication events occurred in subgroup I. Quantitative RT-PCR indicated that several CaBBX genes were induced by abiotic stress and hormones, some had tissue-specific expression profiles or differentially expressed at developmental stages. Most of CaBBX members were predicated to be nucleus-localized in consistent with the transient expression assay by onion inner epidermis of the three tested CaBBX members (CaBBX5, 6 and 20). Conclusion Several CaBBX genes were induced by abiotic stress and exogenous phytohormones, some expressed tissue-specific and variously at different developmental stage. The detected CaBBXs act as nucleus-localized transcription factors. Our data might be a foundation in the identification of CaBBX genes, and a further understanding of their biological function in future studies.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Cuixia LIU ◽  
Zhifang LI ◽  
Lingling DOU ◽  
Yi YUAN ◽  
Changsong ZOU ◽  
...  

Abstract Background Cotton is the world’s largest and most important source of renewable natural fiber. BEL1-like homeodomain (BLH) genes are ubiquitous in plants and have been reported to contribute to plant development. However, there is no comprehensive characterization of this gene family in cotton. In this study, 32, 16, and 18 BLH genes were identified from the G. hirsutum, G. arboreum, and G. raimondii genome, respectively. In addition, we also studied the phylogenetic relationships, chromosomal location, gene structure, and gene expression patterns of the BLH genes. Results The results indicated that these BLH proteins were divided into seven distinct groups by phylogenetic analysis. Among them, 25 members were assigned to 15 chromosomes. Furthermore, gene structure, chromosomal location, conserved motifs, and expression level of BLH genes were investigated in G. hirsutum. Expression profiles analysis showed that four genes (GhBLH1_3, GhBLH1_4, GhBLH1_5, and GhBLH1_6) from BLH1 subfamily were highly expressed during the fiber cell elongation period. The expression levels of these genes were significantly induced by gibberellic acid and brassinosteroid, but not auxin. Exogenous application of gibberellic acid significantly enhanced GhBLH1_3, GhBLH1_4, and GhBLH1_5 transcripts. Expression levels of GhBLH1_3 and GhBLH1_4 genes were significantly increased under brassinosteroid treatment. Conclusions The BLH gene family plays a very important role in many biological processes during plant growth and development. This study deepens our understanding of the role of the GhBLH1 gene involved in fiber development and will help us in breeding better cotton varieties in the future.


2018 ◽  
Vol 19 (10) ◽  
pp. 3246 ◽  
Author(s):  
Jianbo Li ◽  
Jin Zhang ◽  
Huixia Jia ◽  
Zhiqiang Yue ◽  
Mengzhu Lu ◽  
...  

Small heat shock proteins (sHsps) function mainly as molecular chaperones that play vital roles in response to diverse stresses, especially high temperature. However, little is known about the molecular characteristics and evolutionary history of the sHsp family in Salix suchowensis, an important bioenergy woody plant. In this study, 35 non-redundant sHsp genes were identified in S. suchowensis, and they were divided into four subfamilies (C, CP, PX, and MT) based on their phylogenetic relationships and predicted subcellular localization. Though the gene structure and conserved motif were relatively conserved, the sequences of the Hsp20 domain were diversified. Eight paralogous pairs were identified in the Ssu-sHsp family, in which five pairs were generated by tandem duplication events. Ka/Ks analysis indicated that Ssu-sHsps had undergone purifying selection. The expression profiles analysis showed Ssu-Hsps tissue-specific expression patterns, and they were induced by at least one abiotic stress. The expression correlation between two paralogous pairs (Ssu-sHsp22.2-CV/23.0-CV and 23.8-MT/25.6-MT) were less than 0.6, indicating that they were divergent during the evolution. Various cis-acting elements related to stress responses, hormone or development, were detected in the promoter of Ssu-sHsps. Furthermore, the co-expression network revealed the potential mechanism of Ssu-sHsps under stress tolerance and development. These results provide a foundation for further functional research on the Ssu-sHsp gene family in S. suchowensis.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10878
Author(s):  
Mengyao Li ◽  
Qi He ◽  
Ying Huang ◽  
Ya Luo ◽  
Yong Zhang ◽  
...  

Sucrose synthase (SUS) plays an important role in sucrose metabolism and plant development. The SUS gene family has been identified in many plants, however, there is no definitive study of SUS gene in Brassica juncea. In this study, 14 SUS family genes were identified and comprehensively analyzed using bioinformatics tools. The analyzed parameters included their family member characteristics, chromosomal locations, gene structures and phylogenetic as well as transcript expression profiles. Phylogenetic analysis revealed that the 14 members could be allocated into three groups: SUS I, SUS II and SUS III. Comparisons of the exon/intron structure of the mustard SUS gene indicated that its structure is highly conserved. The conserved structure is attributed to purification selection during evolution. Expansion of the SUS gene family is associated with fragment and tandem duplications of the mustard SUS gene family. Collinearity analysis among species revealed that the SUS gene family could be lost or mutated to varying degrees after the genome was doubled, or when Brassica rapa and Brassica nigra hybridized to form Brassica juncea. The expression patterns of BjuSUSs vary among different stages of mustard stem swelling. Transcriptomics revealed that the BjuSUS01-04 expression levels were the most elevated. It has been hypothesized that they play an important role in sucrose metabolism during stem development. The expression levels of some BjuSUSs were significantly up-regulated when they were treated with plant hormones. However, when subjected to abiotic stress factors, their expression levels were suppressed. This study establishes SUS gene functions during mustard stem development and stress.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yanhui Liu ◽  
Mengnan Chai ◽  
Man Zhang ◽  
Qing He ◽  
Zhenxia Su ◽  
...  

This study identified 57 basic leucine zipper (bZIP) genes from the pineapple genome, and the analysis of these bZIP genes was focused on the evolution and divergence after multiple duplication events in relation to the pineapple genome fusion. According to bioinformatics analysis of a phylogenetic tree, the bZIP gene family was divided into 11 subgroups in pineapple, Arabidopsis, and rice; gene structure and conserved motif analyses showed that bZIP genes within the same subgroup shared similar intron-exon organizations and motif composition. Further synteny analysis showed 17 segmental duplication events with 27 bZIP genes. The study also analyzed the pineapple gene expression of bZIP genes in different tissues, organs, and developmental stages, as well as in abiotic stress responses. The RNA-sequencing data showed that AcobZIP57 was upregulated in all tissues, including vegetative and reproductive tissues. AcobZIP28 and AcobZIP43 together with the other 25 bZIP genes did not show high expression levels in any tissue. Six bZIP genes were exposed to abiotic stress, and the relative expression levels were detected by quantitative real-time PCR. A significant response was observed for AcobZIP24 against all kinds of abiotic stresses at 24 and 48 h in pineapple root tissues. Our study provides a perspective for the evolutionary history and general biological involvement of the bZIP gene family of pineapple, which laid the foundation for future functional characterization of the bZIP genes in pineapple.


2019 ◽  
Author(s):  
Xiaomin Feng ◽  
Yongjun Wang ◽  
Nannan Zhang ◽  
Zilin Wu ◽  
Qiaoying Zeng ◽  
...  

Abstract Background: Plant genomes contain a large number of HAK/KUP/KT transporters, which play important roles in potassium uptake and translocation, osmotic potential regulation, salt tolerance, root morphogenesis and plant development. Potassium deficiency in the soil of a sugarcane planting area is serious. However, the HAK/KUP/KT gene family remains to be characterized in sugarcane (Saccharum). Results: In this study, 30 HAK/KUP/KT genes were identified in Saccharum spontaneum. Phylogenetics, duplication events, gene structures and expression patterns were analyzed. Phylogenetic analysis of the HAK/KUP/KT genes from 15 representative plants showed that this gene family is divided into four groups (clades I-IV). Both ancient whole-genome duplication (WGD) and recent gene duplication contributed to the expansion of the HAK/KUP/KT gene family. Nonsynonymous to synonymous substitution ratio (Ka/Ks) analysis showed that purifying selection was the main force driving the evolution of HAK/KUP/KT genes. The divergence time of the HAK/KUP/KT gene family was estimated to range from 134.8 to 233.7 Mya based on Ks analysis, suggesting that it is an ancient gene family in plants. Gene structure analysis showed that the HAK/KUP/KT genes were accompanied by intron gain/loss in the process of evolution. RNA-seq data analysis demonstrated that the HAK/KUP/KT genes from clades II and III were mainly constitutively expressed in various tissues, while most genes from clades I and IV had no or very low expression in the tested tissues at different developmental stages. The expression of SsHAK1 and SsHAK21 was upregulated in response to low-K+ stress. Yeast functional complementation analysis revealed that SsHAK1 and SsHAK21 could rescue K+ uptake in a yeast mutant. Conclusions: This study provided insights into the evolutionary history of HAK/KUP/KT genes. HAK7/9/18 were mainly expressed in the upper photosynthetic zone and mature zone of the stem. HAK7/9/18/25 were regulated by sunlight. SsHAK1 and SsHAK21 played important roles in mediating potassium acquisition under limited K+ supply. Our results provide valuable information and key candidate genes for further studies on the function of HAK/KUP/KT genes in Saccharum. Keywords: Saccharum, HAK/KUP/KT, evolution, gene expression, low-K+ stress


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 473 ◽  
Author(s):  
Duan ◽  
Wang ◽  
Chao ◽  
Zhang ◽  
Zhang

Class III peroxidases (PODs), commonly known as secretable class III plant peroxidases, are plant-specific enzymes that play critical roles in not only plant growth and development but also the responses to biotic and abiotic stress. In this study, we identified 198 nonredundant POD genes, designated GhPODs, with 180 PODs being predicted to secrete into apoplast. These POD genes were divided into 10 sub-groups based on their phylogenetic relationships. We performed systematic bioinformatic analysis of the POD genes, including analysis of gene structures, phylogenetic relationships, and gene expression profiles. The GhPODs are unevenly distributed on both upland cotton sub-genome A and D chromosomes. Additionally, these genes have undergone 15 segmental and 12 tandem duplication events, indicating that both segmental and tandem duplication contributed to the expansion of the POD gene family in upland cotton. Ka/Ks analysis suggested that most duplicated GhPODs experienced negative selection, with limited functional divergence during the duplication events. High-throughput RNA-seq data indicated that most highly expressed genes might play significant roles in root, stem, leaf, and fiber development. Under K or P deficiency conditions, PODs showed different expression patterns in cotton root and leaf. This study provides useful information for further functional analysis of the POD gene family in upland cotton.


2021 ◽  
Vol 22 (19) ◽  
pp. 10722
Author(s):  
Lu Lu ◽  
Quancan Hou ◽  
Linlin Wang ◽  
Tianye Zhang ◽  
Wei Zhao ◽  
...  

Polygalacturonase (PG, EC 3.2.1.15) is a crucial enzyme for pectin degradation and is involved in various developmental processes such as fruit ripening, pollen development, cell expansion, and organ abscission. However, information on the PG gene family in the maize (Zea mays L.) genome and the specific members involved in maize anther development are still lacking. In this study, we identified 55 PG family genes from the maize genome and further characterized their evolutionary relationship and expression patterns. Phylogenetic analysis revealed that ZmPGs are grouped into six Clades, and gene structures of the same Clade are highly conserved, suggesting their functional conservation. The ZmPGs are randomly distributed across maize chromosomes, and collinearity analysis showed that many ZmPGs might be derived from tandem duplications and segmental duplications, and these genes are under purifying selection. Furthermore, gene expression analysis provided insights into possible functional divergence among ZmPGs. Based on the RNA-seq data analysis, we found that many ZmPGs are expressed in various tissues while 18 ZmPGs are highly expressed in maize anther, and their detailed expression profiles in different anther developmental stages were further investigated by using RT-qPCR analysis. These results provide valuable information for further functional characterization and application of the ZmPGs in maize.


Sign in / Sign up

Export Citation Format

Share Document