lncRNA MALAT1 Inhibits Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Down-Regulating WNT5A

2019 ◽  
Vol 9 (11) ◽  
pp. 1520-1527
Author(s):  
Xiaoliang Li ◽  
Guofeng Xia ◽  
Hongmei Xin ◽  
Chunsheng Tao ◽  
Weiwei Lai ◽  
...  

ncRNA involves in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). WNT5A participates in the growth and development of osteogenic differentiation. This study aims to investigate whether lncRNA MALAT1 regulates BMSCs osteogenesis through WNT5A. qRT-PCR was done to detect the lncRNA MALAT1 level and osteogenic markers in osteoporosis patients and control groups. The above markers and WNT5A protein levels were detected by Western blot. The degree of osteogenic differentiation was detected by ALP activity assay and ALP staining. The differentiation ability of BMSCs after lncRNA MALAT1 overexpression was detected by ARS staining. The binding site of lncRNA MALAT1 to WNT5A was determined by dual luciferase reporter assay. lncRNA MALAT1 expression was higher in patients with osteoporosis, and decreased significantly with increased osteogenic induction. Overexpression of lncRNA MALAT1 in BMSCS reduced WNT5A level, while interference with lncRNA MALAT1 increased WNT5A levels. In cells with overexpression of lncRNA MALAT1, transfection of si-WNT5A can significantly downregulate the RUNX2, OSX, ALP, OCN, OPN, and COL1A1, thereby inhibiting osteogenic differentiation, interfering with the regulation of WNT signaling pathway and regulating BMSCs osteogenic differentiation. lncRNA MALAT1 and WNT5A can regulate BMSCs osteogenesis, thus accelerating the progression of osteoporosis.

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yicai Zhang ◽  
Yi Sun ◽  
Jinlong Liu ◽  
Yu Han ◽  
Jinglong Yan

The molecular mechanisms how bone marrow-derived mesenchymal stem cells (BMSCs) differentiate into osteoblast need to be investigated. MicroRNAs (miRNAs) contribute to the osteogenic differentiation of BMSCs. However, the effect of miR-346-5p on osteogenic differentiation of BMSCs is not clear. This study is aimed at elucidating the underlying mechanism by which miR-346-5p regulates osteogenic differentiation of human BMSCs. Results of alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining indicated that upregulation of miR-346-5p suppressed osteogenic differentiation of BMSCs, whereas downregulation of miR-346-5p enhanced this process. The protein levels of the osteoblastic markers Osterix and Runt-related transcription factor 2 (Runx2) were decreased in cells treated with miR-346-5p mimic at day 7 and day 14 after being differentiated. By contrast, downregulation of miR-346-5p elevated the protein levels of Osterix and Runx2. Moreover, a dual-luciferase reporter assay revealed that Transmembrane Protein 9 (TMEM9) was a target of miR-346-5p. In addition, the Western Blot results demonstrated that the TMEM9 protein level was significantly reduced by the miR-346-5p mimic whereas downregulation of miR-346-5p improved the protein level of TMEM9. These results together demonstrated that miR-346-5p served a key role in BMSC osteogenic differentiation of through targeting TMEM9, which may provide a novel target for clinical treatments of bone injury.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jianliang Gao ◽  
Shouyu Xiang ◽  
Xiao Wei ◽  
Ram Ishwar Yadav ◽  
Menghu Han ◽  
...  

Osteoporosis (OP) is a metabolic disease characterized by decreased bone mass and increased risk of fragility fractures, which significantly reduces the quality of life. Stem cell-based therapies, especially using bone marrow mesenchymal stem cells (BMSCs), are a promising strategy for treating OP. Nevertheless, the survival and differentiation rates of the transplanted BMSCs are low, which limits their therapeutic efficiency. Icariin (ICA) is a traditional Chinese medicine formulation that is prescribed for tonifying the kidneys. It also promotes the proliferation and osteogenic differentiation of BMSCs, although the specific mechanism remains unclear. Based on our previous research, we hypothesized that ICA promotes bone formation via the sclerostin/Wnt/β-catenin signaling pathway. We isolated rat BMSCs and transfected them with sclerostin gene (SOST) overexpressing or knockdown constructs and assessed osteogenic induction in the presence or absence of ICA. Sclerostin significantly inhibited BMSC proliferation and osteogenic differentiation, whereas the presence of ICA not only increased the number of viable BMSCs but also enhanced ALP activity and formation of calcium nodules during osteogenic induction. In addition, the osteogenic genes including Runx2, β-catenin, and c-myc as well as antioxidant factors (Prdx1, Cata, and Nqo1) were downregulated by sclerostin and restored by ICA treatment. Mechanistically, ICA exerted these effects by activating the Wnt/β-catenin pathway. In conclusion, ICA can promote the proliferation and osteogenic differentiation of BMSCs in situ and therefore may enhance the therapeutic efficiency of BMSC transplantation in OP.


2020 ◽  
Author(s):  
Yuli Wang ◽  
Fengyi Lv ◽  
Lintong Huang ◽  
Hengwei Zhang ◽  
Bing Li ◽  
...  

Abstract Background and aim: Periodontitis is a chronic inflammatory disease inducing the absorption of alveolar bone and leading to tooth loss. Human amnion–derived mesenchymal stem cells (HAMSCs) have been used for studying inflammatory processes. This study aimed to explore the role of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (ANRIL) in HAMSC-driven osteogenesis in lipopolysaccharide (LPS)-induced human bone marrow mesenchymal stem cells (HBMSCs).Methods: The cells were incubated with a co-culture system. Reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity were used to detect the oxidative stress level. Flow cytometry was performed to determine cell proliferation. The alkaline phosphatase (ALP) activity, Alizarin red assay, cell transfection, and rat mandibular defect model were used to evaluate the osteogenic differentiation. Quantitative real-time reverse transcription–polymerase chain reaction (RT-PCR), Western blot analysis, dual-luciferase reporter assay, and immunofluorescence staining were used to evaluate the molecular mechanisms.Results: This study showed that HAMSCs promoted the osteogenesis of LPS-induced HBMSCs, while the ANRIL level in HBMSCs decreased during co-culture. ANRIL had no significant influence on the proliferation of LPS-induced HBMSCs. However, its overexpression inhibited the HAMSC-driven osteogenesis in vivo and in vitro, whereas its knockdown reversed these effects. Mechanistically, this study found that downregulating ANRIL led to the overexpression of microRNA-125a (miR-125a), and further contributed to the competitive binding of miR-125a and adenomatous polyposis coli (APC), thus significantly activating the Wnt/β-catenin pathway.Conclusion: The study indicated that HAMSCs promoted the osteogenic differentiation of LPS-induced HBMSCs via the ANRIL/miR-125a/APC axis, and offered a novel approach for periodontitis therapy.


2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Ying Chen ◽  
Yu-Run Yang ◽  
Xiao-Liang Fan ◽  
Peng Lin ◽  
Huan Yang ◽  
...  

AbstractOsteoblast-mediated bone formation is a complex process involving various pathways and regulatory factors, including cytokines, growth factors, and hormones. Investigating the regulatory mechanisms behind osteoblast differentiation is important for bone regeneration therapy. miRNAs are known as important regulators, not only in a variety of cellular processes, but also in the pathogenesis of bone diseases. In the present study, we investigated the potential roles of miR-206 during osteoblast differentiation. We report that miR-206 expression was significantly down-regulated in human bone marrow mesenchymal stem cells (BMSCs) at days 7 and 14 during osteogenic induction. Furthermore, miR-206 overexpressing BMSCs showed attenuated alkaline phosphatase (ALP) activity, Alizarin Red staining, and osteocalcin secretion. The mRNA levels of osteogenic markers, Runx2 and Osteopontin (OPN), were significantly down-regulated in miR-206 overexpressing BMSCs. We observed that significantly increased glutamine uptake at days 7 and 14 during the osteogenic induction and inhibition of glutamine metabolism by knocking down glutaminase (GLS)-suppressed osteogenic differentiation of BMSCs. Here, we discover that miR-206 could directly bind to the 3′-UTR region of GLS mRNA, resulting in suppressed GLS expression and glutamine metabolism. Finally, restoration of GLS in miR-206 overexpressing BMSCs led to recovery of glutamine metabolism and osteogenic differentiation. In summary, these results reveal a new insight into the mechanisms of the miR-206-mediated osteogenesis through regulating glutamine metabolism. Our study may contribute to the development of therapeutic agents against bone diseases.


2020 ◽  
Author(s):  
Yuli Wang ◽  
Fengyi Lv ◽  
Lintong Huang ◽  
Hengwei Zhang ◽  
Bing Li ◽  
...  

Abstract Background and aim: Periodontitis is a chronic inflammatory disease inducing the absorption of alveolar bone and leading to tooth loss. Human amnion–derived mesenchymal stem cells (HAMSCs) have been used for studying inflammatory processes. This study aimed to explore the role of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (ANRIL) in HAMSC-driven osteogenesis in lipopolysaccharide (LPS)-induced human bone marrow mesenchymal stem cells (HBMSCs). Methods: The cells were incubated with a co-culture system. Reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity were used to detect the oxidative stress level. Flow cytometry was performed to determine cell proliferation. The alkaline phosphatase (ALP) activity, Alizarin red assay, cell transfection, and rat mandibular defect model were used to evaluate the osteogenic differentiation. Quantitative real-time reverse transcription–polymerase chain reaction (RT-PCR), Western blot analysis, dual-luciferase reporter assay, and immunofluorescence staining were used to evaluate the molecular mechanisms.Results: This study showed that HAMSCs promoted the osteogenesis of LPS-induced HBMSCs, while the ANRIL level in HBMSCs decreased during co-culture. ANRIL had no significant influence on the proliferation of LPS-induced HBMSCs. However, its overexpression inhibited the HAMSC-driven osteogenesis in vivo and in vitro, whereas its knockdown reversed these effects. Mechanistically, this study found that downregulating ANRIL led to the overexpression of microRNA-125a (miR-125a), and further contributed to the competitive binding of miR-125a and adenomatous polyposis coli (APC), thus significantly activating the Wnt/β-catenin pathway. Conclusion: The study indicated that HAMSCs promoted the osteogenic differentiation of LPS-induced HBMSCs via the ANRIL/miR-125a/APC axis, and offered a novel approach for periodontitis therapy.


2020 ◽  
Author(s):  
Yuli Wang ◽  
Fengyi Lv ◽  
Lintong Huang ◽  
Hengwei Zhang ◽  
Bing Li ◽  
...  

Abstract Background: Periodontitis is a chronic inflammatory disease inducing the absorption of alveolar bone and leading to tooth loss. Human amnion-derived mesenchymal stem cells (HAMSCs) have been studied as a potential strategy for inflammatory processes. Here, we explored the role of long non-coding RNA (LncRNA) antisense non-coding RNA in the INK4 locus (ANRIL) in HAMSCs-droved osteogenesis in lipopolysaccharide (LPS)-induced human bone marrow mesenchymal stem cells (HBMSCs). Methods: Cells were incubated with coculture system. Reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity were used to detect oxidative stress level. Flow cytometry was performed to determine the cell proliferation. The Alkaline phosphatase (ALP) and Alizarin red assay, cell transfection and rat mandibular defect model were used to evaluate the osteogenic differentiation. Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), Western blot, dual-luciferase reporter assay and immunofluorescence Staining were used to evaluate the molecular mechanisms.Results: Here, we discovered that HAMSCs promoted osteogenesis of LPS-induced HBMSCs, while ANRIL level in HBMSCs was decreased during coculturing. ANRIL had no significant influence on the proliferation of LPS-induced HBMSCs, while its overexpression inhibited the HAMSCs-droved osteogenesis in vivo and in vitro; whereas its knockdown reversed these effects. Mechanistically, we found that downregulating ANRIL led to overexpression of microRNA-125a (miR-125a), and further contributed to the competitively bounding of miR-125a and Adenomatous polyposis coli (APC), thus significantly activating the Wnt/β-catenin pathway. Conclusions: Our study indicates that HAMSCs promote osteogenic differentiation of LPS-induced HBMSCs via ANRIL/miR-125a/APC axis, and offer a novel approach for periodontitis therapy.


Author(s):  
Yiyang Xu ◽  
Ruobing Xin ◽  
Hong Sun ◽  
Dianbo Long ◽  
Zhiwen Li ◽  
...  

Long non-coding RNAs (lncRNAs) play pivotal roles in mesenchymal stem cell differentiation. However, the mechanisms by which non-coding RNA (ncRNA) networks regulate osteogenic differentiation remain unclear. Therefore, our aim was to identify RNA-associated gene and transcript expression profiles during osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Using transcriptome sequencing for differentially expressed ncRNAs and mRNAs between days 0 and 21 of osteogenic differentiation of BMSCs, we found that the microRNA (miRNA) miR-503-5p was significantly downregulated. However, the putative miR-503-5p target, sorbin and SH3 domain containing 1 (SORBS1), was significantly upregulated in osteogenesis. Moreover, through lncRNA-miRNA-mRNA interaction analyses and loss- and gain-of-function experiments, we discovered that the lncRNAs LOC100126784 and POM121L9P were abundant in the cytoplasm and enhanced BMSC osteogenesis by promoting SORBS1 expression. In contrast, miR-503-5p reversed this effect. Ago2 RNA-binding protein immunoprecipitation and dual-luciferase reporter assays further validated the direct binding of miR-503-5p to LOC100126784 and POM121L9P. Furthermore, SORBS1 knockdown suppressed early osteogenic differentiation in BMSCs, and co-transfection with SORBS1 small interfering RNAs counteracted the BMSCs’ osteogenic capacity promoted by LOC100126784- and POM121L9P-overexpressing lentivirus plasmids. Thus, the present study demonstrated that the lncRNAs LOC100126784 and POM121L9P facilitate the osteogenic differentiation of BMSCs via the miR-503-5p/SORBS1 axis, providing potential therapeutic targets for treating osteoporosis and bone defects.


2022 ◽  
Vol 12 (4) ◽  
pp. 770-777
Author(s):  
Siyuan Chen ◽  
Weixiong Guo ◽  
Jinsong Wei ◽  
Han Lin ◽  
Fengyan Guo

Objective: The aim of this study was to explore the role of has_circ_0010452 in the progression of osteoporosis (OP) targeting miR-543, as well as their functions in regulating proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Methods: The expression levels of circ_0010452 and miR-543 in hBMSCs at different time points of osteogenic differentiation were determined by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). After transfection of circ_0010452 siRNA or miR-543 inhibitor in hBMSCs, the relative expression levels of osteogenic marker proteins, including oat spelt xylan (OSX), osteocalcin (OCN) and collagen I (Col-1), were determined by western blot. Cell proliferation of hBMSCs was valued by Cell Counting Kit 8 (CCK-8) assay. Dual-Luciferase reporter gene assay was performed to verify the relationship between circ_0010452 and miR-543. Subsequently, the regulatory effects of circ_0010452 and miR-543 on osteogenic differentiation and the capability of mineralization were evaluated by alkaline phosphatase (ALP) determination and alizarin red staining, respectively. Results: The expression of circ_0010452 decreased gradually and miR-543 increased in hBMSCs with the prolongation of osteogenic differentiation. circ_0010452 could bind to miR-543, which was negatively regulated by miR-543 in hBMSCs. Moreover, knockdown of circ_0010452 inhibited proliferation and osteogenic differentiation by upregulating miR-543, as well as upregulating expressions of OSX, OCN and Col-1. Furthermore, knockdown of circ_0010452 markedly promoted the capability of mineralization of hBMSCs, which was further reversed by transfection of miR-543 inhibitor. The knockdown of miR-543 partially reversed the inhibitory effect of circ_0010452 on the osteogenesis of hBMSCs. Conclusions: Silence of circ_0010452 promotes the development of OP via binding to miR-543 regulating proliferation and osteogenic differentiation of hBMSCs, thus promoting the progression of osteoporosis.


2020 ◽  
Author(s):  
Shuting Jiang ◽  
Hongyan Liu ◽  
Weiyan Zhu ◽  
Hui Yan ◽  
Beizhan Yan

Abstract Background Mesenchymal stem cells transplantation gradually become a potential treatment for bone defect in clinic practice. This study aimed to investigate the molecular mechanism of PRP and autophagy for osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). Methods Thrombin activated PRP was prepared and the BMSCs were treated with activated PRP with different concentration and transfected with miR-140-3p vector (mimics or inhibitor), si-SPRED2 or co-transfected with miR-140-3p inhibitor and si-SPRED2, respectively. qRT-PCR and Western blotting were used to determine the mRNA expression and protein expression. A luciferase reporter assay was conducted to identified the targeting relationship between iR-140-3p and SPRED2 Subsequently, cell proliferation was detected by MTT and ALP activity was also determined. Alizarin red staining was used for the evaluating the formation of calcium nodules. Results MiR-140-3p expression was found to be inhibited by PRP in a dose-dependent manner, besides, cell proliferation, ALP activity, the expression of COL-I, OPN, Runx2 and OCN, and the formation of calcium nodules related to osteogenic differentiation were enhanced by PRP. Subsequently, we found that PRP activated autophagy and up-regulated SPRED2 expression in BMSCs through suppressing miR-140-3p expression. Moreover, we confirmed that miR-140-3p targeted SPRED2 and negatively regulation its expression. Finally, the findings showed that inhibition of miR-140-3p enhanced cell proliferation, osteogenic differentiation and autophagy of BMSCs by negatively regulating SPRED2 expression. Conclusion Thrombin activated PRP accelerated osteogenic differentiation of BMSCs by activing autophagy through miR-140-3p/SPRED2 axis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuli Wang ◽  
Fengyi Lv ◽  
Lintong Huang ◽  
Hengwei Zhang ◽  
Bing Li ◽  
...  

Abstract Background and aim Periodontitis is a chronic inflammatory disease inducing the absorption of alveolar bone and leading to tooth loss. Human amnion-derived mesenchymal stem cells (HAMSCs) have been used for studying inflammatory processes. This study aimed to explore the role of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (ANRIL) in HAMSC-driven osteogenesis in lipopolysaccharide (LPS)-induced human bone marrow mesenchymal stem cells (HBMSCs). Methods The cells were incubated with a co-culture system. Reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity were used to detect the oxidative stress level. Flow cytometry was performed to determine cell proliferation. The alkaline phosphatase (ALP) activity, Alizarin red assay, cell transfection, and rat mandibular defect model were used to evaluate the osteogenic differentiation. Quantitative real-time reverse transcription–polymerase chain reaction (RT-PCR), Western blot analysis, dual-luciferase reporter assay, and immunofluorescence staining were used to evaluate the molecular mechanisms. Results This study showed that HAMSCs promoted the osteogenesis of LPS-induced HBMSCs, while the ANRIL level in HBMSCs decreased during co-culture. ANRIL had no significant influence on the proliferation of LPS-induced HBMSCs. However, its overexpression inhibited the HAMSC-driven osteogenesis in vivo and in vitro, whereas its knockdown reversed these effects. Mechanistically, this study found that downregulating ANRIL led to the overexpression of microRNA-125a (miR-125a), and further contributed to the competitive binding of miR-125a and adenomatous polyposis coli (APC), thus significantly activating the Wnt/β-catenin pathway. Conclusion The study indicated that HAMSCs promoted the osteogenic differentiation of LPS-induced HBMSCs via the ANRIL/miR-125a/APC axis, and offered a novel approach for periodontitis therapy.


Sign in / Sign up

Export Citation Format

Share Document