Design of High Speed Reconfigurable Distributed Life Time Efficient Routing Algorithm in Wireless Sensor Network

2020 ◽  
Vol 17 (9) ◽  
pp. 3860-3866
Author(s):  
M. L. Umashankar ◽  
S. Mallikarjunaswamy ◽  
M. V. Ramakrishna

Designing an energy-efficient routing makes the Wireless Sensor Networks (WSN) more effective and attractive for different applications. The WSN communication system power consumption mainly depends on three aspects such as routing cost computation, signal interference, and routing distance. All three factors are equally important in order to improve the network performance. The system reliability and deployment cost depends on the energy efficiency of the WSN. The energy related cost assignment and shortest paths identification are used in existing routing techniques. In the existing routing techniques maximum achievable lifetime and optimal link cost are low. Hence greatest possible performance can be achieved in distributed routing algorithm by finding shortest path. Maximum lifetime and best cost link can be generally obtained using distributed shortest path routing algorithm. In this paper high speed reconfigurable distributed Lifetime-Efficient Routing algorithm is designed to provide route selection outline with low complexity and obtain better performance compared to existing routing algorithm.

2016 ◽  
Vol 16 (11) ◽  
pp. 4631-4637 ◽  
Author(s):  
Juan Cota-Ruiz ◽  
Pablo Rivas-Perea ◽  
Ernesto Sifuentes ◽  
Rafael Gonzalez-Landaeta

Author(s):  
K Pavan Kumar Reddy Et.al

In wireless sensor networks (WSNs), energy constraint of node is the major issue, as the sensor may be deployed in the area where energy backup or quick replacements may not be available. In such cases, preserving the node energy and prolonging the network life time play crucial role in wireless sensor networks. Similarly, sensor nodes are highly vulnerable to attacks, attackers can easily tamper the sensor node and compromise it. Thus to overcome above stated two problems, the proposed work ensures shortest path routing, which ensures network life time of sensor nodes and the trust based routing, which avoids node compromise attacks. The proposed shortest path routing algorithms takes route through multi-hop nodes to corresponding sink. The shortest path based on the geographical routing strategy chooses the nodes nearest to the routing node and sink node. The novel routing framework proposed in this work considered shortest path with trust based routes. The node's energy is considered to taking reliable node on the routing path, which ensure the packet delivery and avoids any node failure due to less energy. The node's trust value is evaluated with three type, which ensure that the paths created are more reliable


Clustering with energy efficient routing is the most important technique for the wireless sensor networks. Cluster converts group of sensor nodes into small clusters and electing the cluster heads with energy efficient cluster routing for all the clusters in the Wireless sensor networks. By selecting the proper energy efficient cluster routing algorithm we can increase the life time of the wireless sensor networks. Lot of techniques are used for energy efficient cluster routing for Wireless sensor networks like Particle Swarm Optimization, Artificial Bees Colony Optimization, Crow Search Algorithm, Energy-efficient Intracluster Routing (EIR) algorithm and Dolphin Echolocation Algorithm (DEA). In this paper we have given the comparative analysis report of energy efficient cluster routing algorithms for the wireless sensor networks in terms of energy efficiency and sensor node lifetime of the networks.


Author(s):  
Asmaa Osamaa ◽  
Shaimaa Ahmed El-Said ◽  
Aboul Ella Hassanien

Wireless sensor networks (WSNs), which normally consist of hundreds or thousands of sensor nodes each capable of sensing, processing, and transmitting environmental information, are deployed to monitor certain physical phenomena or to detect and track certain objects in an area of interests. The sensor nodes in WSN transmit data depending on local information and parameters such as signal strength, power consumption, location of data collection and accretion. Only reachable nodes are able to communicate with each other directly to collect and transmit data. The motes have limited energy resources along with constraints on its computational and storage capabilities. Thus, innovative techniques that eliminate energy inefficiencies that would shorten the lifetime of the network are highly required. Such constraints combined with a typical deployment of large number of sensor nodes pose many challenges to the design and management of WSNs and necessitate energy-awareness at all layers of the networking protocol stack. In this chapter, we present a survey of the state-of-the-art routing techniques in WSNs that take into consideration the energy issue.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3887 ◽  
Author(s):  
Deep Kumar Bangotra ◽  
Yashwant Singh ◽  
Arvind Selwal ◽  
Nagesh Kumar ◽  
Pradeep Kumar Singh ◽  
...  

The lifetime of a node in wireless sensor networks (WSN) is directly responsible for the longevity of the wireless network. The routing of packets is the most energy-consuming activity for a sensor node. Thus, finding an energy-efficient routing strategy for transmission of packets becomes of utmost importance. The opportunistic routing (OR) protocol is one of the new routing protocol that promises reliability and energy efficiency during transmission of packets in wireless sensor networks (WSN). In this paper, we propose an intelligent opportunistic routing protocol (IOP) using a machine learning technique, to select a relay node from the list of potential forwarder nodes to achieve energy efficiency and reliability in the network. The proposed approach might have applications including e-healthcare services. As the proposed method might achieve reliability in the network because it can connect several healthcare network devices in a better way and good healthcare services might be offered. In addition to this, the proposed method saves energy, therefore, it helps the remote patient to connect with healthcare services for a longer duration with the integration of IoT services.


2000 ◽  
Vol 01 (02) ◽  
pp. 115-134 ◽  
Author(s):  
TSENG-KUEI LI ◽  
JIMMY J. M. TAN ◽  
LIH-HSING HSU ◽  
TING-YI SUNG

Given a shortest path routing algorithm of an interconnection network, the edge congestion is one of the important factors to evaluate the performance of this algorithm. In this paper, we consider the twisted cube, a variation of the hypercube with some better properties, and review the existing shortest path routing algorithm8. We find that its edge congestion under the routing algorithm is high. Then, we propose a new shortest path routing algorithm and show that our algorithm has optimum time complexity O(n) and optimum edge congestion 2n. Moreover, we calculate the bisection width of the twisted cube of dimension n.


Sign in / Sign up

Export Citation Format

Share Document