Internet of Things-Based Smart Drip Irrigation Using Arduino

2020 ◽  
Vol 17 (9) ◽  
pp. 4598-4603
Author(s):  
Akanksha Kumari ◽  
Prabhat Kumar Sahu

Agriculture is one of the primary sectors in the Indian economy. Over the past several years, agricultural scientific techniques and agricultural implements have developed in the region, replacing the traditional method of farming. By which the economic condition of the farmers has improved. In addition, there are still some small farmers in India who use the old traditional methods of farming of agriculture because they do not have the resources to use modern methods. Besides, it is the only region that has contributed not only to the development of itself but also to other areas of the country. Agriculture has a major contribution to the country’s GDP and national income. In addition, it requires a huge manpower and labour which constitutes about 80% of the total workforce. Employees work not only directly but indirectly in the agricultural sector. Irrigation is the use of controlled amounts of water at the required intervals to the plants. Effective irrigation will affect seed development, germination, root growth, utilization of nutrients, plant growth and revival, yield and quality of the entire development process. The farmer knows how much water he has to give to the crop and when crop is to be planted, but the best system of irrigation it is necessary to have the information about use of equipment, plant species, soil structure, soil preparation and It is also important to be aware of all these that at what stage to watering the plant. The aim of this research paper is to describe how the Internet of Things (IoT) framework plays an important role in the field of agriculture. Here to show the importance of IoT in agriculture, we choose “Smart Drip Irrigation System.”

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 442E-442
Author(s):  
Fabián Robles-Contreras ◽  
Raul Leonel Grijalva-Contreras

In the Caborca area, water scarcity is the main problem for the farmers, because of the depletion of the aquifer. This is the main reason why they are focusing on orchards and vegetables. Melon is the vegetable annual crop more extensively grown in this area and is furrow-irrigated with 120 cm of water. But, because of the scarcity of water, it is necessary to use drip irrigation. The objective of this study was to validate in a commercial field (15 ha) the effects of drip irrigation system on the water use, yield, and quality of two honeydew melon varieties (green flesh and orange flesh) in the Caborca area. Our results indicate that, with 50 cm of water applied, yields were 2146 to 2802 boxes/ha for green flesh and orange flesh, respectively. The predominant sizes were 4s and 5s with 25% and 38% for green flesh, and 5s and 6s with 42% and 36% for orange flesh. These sizes are the best for the exportation market.


2021 ◽  
pp. 1169
Author(s):  
Muhammad Afnan Habibi ◽  
Bagus Prastyo ◽  
Aldo Zulfikar Asror Zulkarnain ◽  
Faj'run Ni'am ◽  
Bunga Hidayati

Agriculture is the main and fundamental activity on this earth. However, the agricultural sector has not contributed significantly to the mitigation of natural disasters such as loss of biodiversity, migration of watercourses, lack of clean water, and drought. Based on the results of the population census in the last 10 years, Indonesia's population growth rate reaches 1.25% every year. The consequence of the current phenomenon is the scarcity of food and the shrinking of the people's economic condition. The limited availability of irrigation water is a major agricultural problem experienced by the Tawang Makmur Farmers Group (KTTM). Several solutions have been implemented such as scheduling the opening of drainage channels provided by the village and renting diesel pumps on a regular basis. But in fact, these solutions have not been able to properly address the problems experienced by KTTM. So this paper offers a solar-powered photovoltaic (PV) water pump irrigation system that is integrated with the Internet of Things. Since 1970, PV has become an alternative that is often applied to agricultural irrigation systems in rural areas. The system built in this paper utilizes solar power as a power source that supplies water pumps. The Internet of Things is integrated into the system, enabling farmers to monitor and control agricultural areas in real-time and wirelessly through an adequate internet network.  Pertanian merupakan aktifitas pokok nan fundamental di bumi ini. Akan tetapi, sektor pertanian belum memberikan kontribusi secara signifikan mengenai mitigasi bencana alam seperti kehilangan keragaman hayati, migrasi aliran air, kekurangan air bersih, dan kekeringan. Berdasarkan hasil sensus penduduk dalam 10 tahun terakhir, laju pertumbuhan penduduk Indonesia mencapai 1.25% dalam setiap tahunnya. Konsekuensi dari fenomena yang terjadi saat ini adalah kelangkaan bahan pangan dan penyusutan kondisi ekonomi rakyat. Ketersediaan air irigasi yang terbatas menjadi masalah besar pertanian yang dialami oleh Kelompok Tani Tawang Makmur (KTTM). Beberapa solusi telah diterapkan seperti penjadwalan pembukaan saluran drainase yang disediakan oleh pihak desa, dan menyewa pompa diesel secara berkala. Namun faktanya, solusi tersebut belum mampu mengatasi permasalahan yang dialami oleh KTTM secara tepat. Sehingga makalah ini menawarkan sistem irigasi pompa air photovoltaic (PV) bertenaga surya yang terintegrasi dengan Internet of Things. Sejak tahun 1970, PV telah menjadi alternatif yang sering diterapkan pada sistem irigasi lahan pertanian daerah pedesaan. Sistem yang dibangun pada makalah ini memanfaatkan tenaga surya sebagai sumber daya yang menyuplai pompa air. Internet of Things yang diintegrasikan pada sistem, memungkinkan para petani untuk melakukan monitoring dan kontrol terhadap area pertanian secara real-time dan nirkabel melalui jaringan internet yang memadai.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 545d-545
Author(s):  
D.I. Leskovar ◽  
J.C. Ward ◽  
R.W. Sprague ◽  
A. Meiri

Water pumping restrictions of high-quality irrigation water from underground aquifers is affecting vegetable production in Southwest Texas. There is a need to develop efficient deficit-irrigation strategies to minimize irrigation inputs and maintain crop profitability. Our objective was to determine how growth, yield, and quality of cantaloupe (Cucumis melo L. cv. `Caravelle') are affected by irrigation systems with varying input levels, including drip depth position and polyethylene mulch. Stand establishment systems used were containerized transplants and direct seeding. Field experiments were conducted on a Uvalde silty clay loam soil. Marketable yields increased in the order of pre-irrigation followed by: dry-land conditions, furrow/no-mulch, furrow/mulch, drip-surface (0 cm depth)/mulch, drip-subsurface (10-cm depth)/mulch, and drip-subsurface (30 cm depth)/mulch. Pooled across all drip depth treatments, plants on drip had higher water use efficiency than plants on furrow/no-mulch or furrow/mulch systems. Transplants with drip-surface produced 75% higher total and fruit size No. 9 yields than drip-subsurface (10- or 30-cm depth) during the first harvest, but total yields were unaffected by drip tape position. About similar trends were measured in a subsequent study except for a significant irrigation system (stand establishment interaction for yield. Total yields were highest for transplants on drip-subsurface (10-cm depth) and direct seeded plants on drip-subsurface (10 and 30 cm depth) with mulch.


Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 61-63 ◽  
Author(s):  
Akihiro Fujii

The Internet of Things (IoT) is a term that describes a system of computing devices, digital machines, objects, animals or people that are interrelated. Each of the interrelated 'things' are given a unique identifier and the ability to transfer data over a network that does not require human-to-human or human-to-computer interaction. Examples of IoT in practice include a human with a heart monitor implant, an animal with a biochip transponder (an electronic device inserted under the skin that gives the animal a unique identification number) and a car that has built-in sensors which can alert the driver about any problems, such as when the type pressure is low. The concept of a network of devices was established as early as 1982, although the term 'Internet of Things' was almost certainly first coined by Kevin Ashton in 1999. Since then, IoT devices have become ubiquitous, certainly in some parts of the world. Although there have been significant developments in the technology associated with IoT, the concept is far from being fully realised. Indeed, the potential for the reach of IoT extends to areas which some would find surprising. Researchers at the Faculty of Science and Engineering, Hosei University in Japan, are exploring using IoT in the agricultural sector, with some specific work on the production of melons. For the advancement of IoT in agriculture, difficult and important issues are implementation of subtle activities into computers procedure. The researchers challenges are going on.


2021 ◽  
Vol 17 (3) ◽  
pp. 1-23
Author(s):  
Ning Chen ◽  
Tie Qiu ◽  
Mahmoud Daneshmand ◽  
Dapeng Oliver Wu

The Internet of Things (IoT) has been extensively deployed in smart cities. However, with the expanding scale of networking, the failure of some nodes in the network severely affects the communication capacity of IoT applications. Therefore, researchers pay attention to improving communication capacity caused by network failures for applications that require high quality of services (QoS). Furthermore, the robustness of network topology is an important metric to measure the network communication capacity and the ability to resist the cyber-attacks induced by some failed nodes. While some algorithms have been proposed to enhance the robustness of IoT topologies, they are characterized by large computation overhead, and lacking a lightweight topology optimization model. To address this problem, we first propose a novel robustness optimization using evolution learning (ROEL) with a neural network. ROEL dynamically optimizes the IoT topology and intelligently prospects the robust degree in the process of evolutionary optimization. The experimental results demonstrate that ROEL can represent the evolutionary process of IoT topologies, and the prediction accuracy of network robustness is satisfactory with a small error ratio. Our algorithm has a better tolerance capacity in terms of resistance to random attacks and malicious attacks compared with other algorithms.


Sign in / Sign up

Export Citation Format

Share Document