Emotional Tweets Analysis on Social Media with Short Text Classification Using Various Machine Learning Techniques

2020 ◽  
Vol 17 (12) ◽  
pp. 5477-5482
Author(s):  
Shaik Rahamat Basha ◽  
M. Surya Bhupal Rao ◽  
P. Kiran Kumar Reddy ◽  
G. Ravi Kumar

Online Social media are a huge source of regular communication since most people in the world today use these services to stay communicating with each other in their modern lives. Today’s research has been implemented on emotion recognition by message. The majority of the research uses a method of machine learning. In order to extract information from the textual text written by human beings, natural language processing (NLP) techniques were used. The emotion of humans may be expressed when reading or writing a message. Human beings are willing, since human life is filled with a variety of emotions, to feel various emotions. This analysis helps us to realize the use of text processing and text mining methods by social media researchers in order to classify key data themes. Our experiments presented that the two main social networks in the world are conducting text-based mining on Facebook and Twitter. In this proposed study, we categorized the human feelings such as joy, fear, love, anger, surprise, sadness and thankfulness and compared our results using various methods of machine learning.

2020 ◽  
pp. 193-201 ◽  
Author(s):  
Hayder A. Alatabi ◽  
Ayad R. Abbas

Over the last period, social media achieved a widespread use worldwide where the statistics indicate that more than three billion people are on social media, leading to large quantities of data online. To analyze these large quantities of data, a special classification method known as sentiment analysis, is used. This paper presents a new sentiment analysis system based on machine learning techniques, which aims to create a process to extract the polarity from social media texts. By using machine learning techniques, sentiment analysis achieved a great success around the world. This paper investigates this topic and proposes a sentiment analysis system built on Bayesian Rough Decision Tree (BRDT) algorithm. The experimental results show the success of this system where the accuracy of the system is more than 95% on social media data.


2012 ◽  
pp. 13-22 ◽  
Author(s):  
João Gama ◽  
André C.P.L.F. de Carvalho

Machine learning techniques have been successfully applied to several real world problems in areas as diverse as image analysis, Semantic Web, bioinformatics, text processing, natural language processing,telecommunications, finance, medical diagnosis, and so forth. A particular application where machine learning plays a key role is data mining, where machine learning techniques have been extensively used for the extraction of association, clustering, prediction, diagnosis, and regression models. This text presents our personal view of the main aspects, major tasks, frequently used algorithms, current research, and future directions of machine learning research. For such, it is organized as follows: Background information concerning machine learning is presented in the second section. The third section discusses different definitions for Machine Learning. Common tasks faced by Machine Learning Systems are described in the fourth section. Popular Machine Learning algorithms and the importance of the loss function are commented on in the fifth section. The sixth and seventh sections present the current trends and future research directions, respectively.


Author(s):  
João Gama ◽  
André C.P.L.F. de Carvalho

Machine learning techniques have been successfully applied to several real world problems in areas as diverse as image analysis, Semantic Web, bioinformatics, text processing, natural language processing,telecommunications, finance, medical diagnosis, and so forth. A particular application where machine learning plays a key role is data mining, where machine learning techniques have been extensively used for the extraction of association, clustering, prediction, diagnosis, and regression models. This text presents our personal view of the main aspects, major tasks, frequently used algorithms, current research, and future directions of machine learning research. For such, it is organized as follows: Background information concerning machine learning is presented in the second section. The third section discusses different definitions for Machine Learning. Common tasks faced by Machine Learning Systems are described in the fourth section. Popular Machine Learning algorithms and the importance of the loss function are commented on in the fifth section. The sixth and seventh sections present the current trends and future research directions, respectively.


Author(s):  
Marina Sokolova ◽  
Stan Szpakowicz

This chapter presents applications of machine learning techniques to problems in natural language processing that require work with very large amounts of text. Such problems came into focus after the Internet and other computer-based environments acquired the status of the prime medium for text delivery and exchange. In all cases which the authors discuss, an algorithm has ensured a meaningful result, be it the knowledge of consumer opinions, the protection of personal information or the selection of news reports. The chapter covers elements of opinion mining, news monitoring and privacy protection, and, in parallel, discusses text representation, feature selection, and word category and text classification problems. The applications presented here combine scientific interest and significant economic potential.


Author(s):  
Marina Sokolova ◽  
Stan Szpakowicz

This chapter presents applications of machine learning techniques to traditional problems in natural language processing, including part-of-speech tagging, entity recognition and word-sense disambiguation. People usually solve such problems without difficulty or at least do a very good job. Linguistics may suggest labour-intensive ways of manually constructing rule-based systems. It is, however, the easy availability of large collections of texts that has made machine learning a method of choice for processing volumes of data well above the human capacity. One of the main purposes of text processing is all manner of information extraction and knowledge extraction from such large text. Machine learning methods discussed in this chapter have stimulated wide-ranging research in natural language processing and helped build applications with serious deployment potential.


2019 ◽  
Vol 5 (1) ◽  
pp. 7
Author(s):  
Priyanka Rathord ◽  
Dr. Anurag Jain ◽  
Chetan Agrawal

With the help of Internet, the online news can be instantly spread around the world. Most of peoples now have the habit of reading and sharing news online, for instance, using social media like Twitter and Facebook. Typically, the news popularity can be indicated by the number of reads, likes or shares. For the online news stake holders such as content providers or advertisers, it’s very valuable if the popularity of the news articles can be accurately predicted prior to the publication. Thus, it is interesting and meaningful to use the machine learning techniques to predict the popularity of online news articles. Various works have been done in prediction of online news popularity. Popularity of news depends upon various features like sharing of online news on social media, comments of visitors for news, likes for news articles etc. It is necessary to know what makes one online news article more popular than another article. Unpopular articles need to get optimize for further popularity. In this paper, different methodologies are analyzed which predict the popularity of online news articles. These methodologies are compared, their parameters are considered and improvements are suggested. The proposed methodology describes online news popularity predicting system.


2021 ◽  
Vol 11 (19) ◽  
pp. 9292
Author(s):  
Noman Islam ◽  
Asadullah Shaikh ◽  
Asma Qaiser ◽  
Yousef Asiri ◽  
Sultan Almakdi ◽  
...  

In recent years, the consumption of social media content to keep up with global news and to verify its authenticity has become a considerable challenge. Social media enables us to easily access news anywhere, anytime, but it also gives rise to the spread of fake news, thereby delivering false information. This also has a negative impact on society. Therefore, it is necessary to determine whether or not news spreading over social media is real. This will allow for confusion among social media users to be avoided, and it is important in ensuring positive social development. This paper proposes a novel solution by detecting the authenticity of news through natural language processing techniques. Specifically, this paper proposes a novel scheme comprising three steps, namely, stance detection, author credibility verification, and machine learning-based classification, to verify the authenticity of news. In the last stage of the proposed pipeline, several machine learning techniques are applied, such as decision trees, random forest, logistic regression, and support vector machine (SVM) algorithms. For this study, the fake news dataset was taken from Kaggle. The experimental results show an accuracy of 93.15%, precision of 92.65%, recall of 95.71%, and F1-score of 94.15% for the support vector machine algorithm. The SVM is better than the second best classifier, i.e., logistic regression, by 6.82%.


2020 ◽  
Author(s):  
Hanyin Wang ◽  
Yikuan Li ◽  
Meghan Hutch ◽  
Andrew Naidech ◽  
Yuan Luo

BACKGROUND The emergence of SARS-CoV-2 (ie, COVID-19) has given rise to a global pandemic affecting 215 countries and over 40 million people as of October 2020. Meanwhile, we are also experiencing an infodemic induced by the overabundance of information, some accurate and some inaccurate, spreading rapidly across social media platforms. Social media has arguably shifted the information acquisition and dissemination of a considerably large population of internet users toward higher interactivities. OBJECTIVE This study aimed to investigate COVID-19-related health beliefs on one of the mainstream social media platforms, Twitter, as well as potential impacting factors associated with fluctuations in health beliefs on social media. METHODS We used COVID-19-related posts from the mainstream social media platform Twitter to monitor health beliefs. A total of 92,687,660 tweets corresponding to 8,967,986 unique users from January 6 to June 21, 2020, were retrieved. To quantify health beliefs, we employed the health belief model (HBM) with four core constructs: perceived susceptibility, perceived severity, perceived benefits, and perceived barriers. We utilized natural language processing and machine learning techniques to automate the process of judging the conformity of each tweet with each of the four HBM constructs. A total of 5000 tweets were manually annotated for training the machine learning architectures. RESULTS The machine learning classifiers yielded areas under the receiver operating characteristic curves over 0.86 for the classification of all four HBM constructs. Our analyses revealed a basic reproduction number <i>R</i><sub>0</sub> of 7.62 for trends in the number of Twitter users posting health belief–related content over the study period. The fluctuations in the number of health belief–related tweets could reflect dynamics in case and death statistics, systematic interventions, and public events. Specifically, we observed that scientific events, such as scientific publications, and nonscientific events, such as politicians’ speeches, were comparable in their ability to influence health belief trends on social media through a Kruskal-Wallis test (<i>P</i>=.78 and <i>P</i>=.92 for perceived benefits and perceived barriers, respectively). CONCLUSIONS As an analogy of the classic epidemiology model where an infection is considered to be spreading in a population with an <i>R</i><sub>0</sub> greater than 1, we found that the number of users tweeting about COVID-19 health beliefs was amplifying in an epidemic manner and could partially intensify the infodemic. It is “unhealthy” that both scientific and nonscientific events constitute no disparity in impacting the health belief trends on Twitter, since nonscientific events, such as politicians’ speeches, might not be endorsed by substantial evidence and could sometimes be misleading.


Author(s):  
Erick Omuya ◽  
George Okeyo ◽  
Michael Kimwele

Social media has been embraced by different people as a convenient and official medium of communication. People write messages and attach images and videos on Twitter, Facebook and other social media which they share. Social media therefore generates a lot of data that is rich in sentiments from these updates. Sentiment analysis has been used to determine opinions of clients, for instance, relating to a particular product or company. Knowledge based approach and Machine learning approach are among the strategies that have been used to analyze these sentiments. The performance of sentiment analysis is however distorted by noise, the curse of dimensionality, the data domains and size of data used for training and testing. This research aims at developing a model for sentiment analysis in which dimensionality reduction and the use of different parts of speech improves sentiment analysis performance. It uses natural language processing for filtering, storing and performing sentiment analysis on the data from social media. The model is tested using Naïve Bayes, Support Vector Machines and K-Nearest neighbor machine learning algorithms and its performance compared with that of two other Sentiment Analysis models. Experimental results show that the model improves sentiment analysis performance using machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document