Novel Synthesis of Nanorod ZnO and Fe-Doped ZnO by the Hydrolysis of Metal Powders

2007 ◽  
Vol 7 (11) ◽  
pp. 4158-4160 ◽  
Author(s):  
B. S. Han ◽  
Y. R. Uhm ◽  
G. M. Kim ◽  
C. K. Rhee

Fe-doped ZnO nanorods have been synthesized by a novel process employing a hydrolysis of metal powders. Zn and Fe nano-powders were used as starting materials and incorporated into distilled water. The solution was refluxed at 60 °C for 24 h to obtain the precipitates from the hydrolysis of Zn and Fe. X-ray diffraction patterns for all the samples showed a pure wurtzite single phase, without any segregation of the Fe into the particulates within the instrumental resolution limit. The TEM results for ZnO with and without an Fe-doping showed that the produced powders had a rod-like shape. The rod shape was attributable to the zinc oxide from the hydrolysis of Zn. With an increasing Fe content, the UV–vis spectra were shifted to a long wave length and this result indicates that the band gap was changed by an Fe-doping.

2007 ◽  
Vol 7 (11) ◽  
pp. 4158-4160
Author(s):  
B. S. Han ◽  
Y. R. Uhm ◽  
G. M. Kim ◽  
C. K. Rhee

Fe-doped ZnO nanorods have been synthesized by a novel process employing a hydrolysis of metal powders. Zn and Fe nano-powders were used as starting materials and incorporated into distilled water. The solution was refluxed at 60 °C for 24 h to obtain the precipitates from the hydrolysis of Zn and Fe. X-ray diffraction patterns for all the samples showed a pure wurtzite single phase, without any segregation of the Fe into the particulates within the instrumental resolution limit. The TEM results for ZnO with and without an Fe-doping showed that the produced powders had a rod-like shape. The rod shape was attributable to the zinc oxide from the hydrolysis of Zn. With an increasing Fe content, the UV–vis spectra were shifted to a long wave length and this result indicates that the band gap was changed by an Fe-doping.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Young Rang Uhm ◽  
Byung Sun Han ◽  
Chang Kyu Rhee ◽  
Sun Ju Choi

Fe- and Cu-doped ZnO nanorods have been synthesized by a novel process employing a hydrolysis of metal powders. Zn, Fe, and Cu nanopowders were used as starting materials and incorporated into distilled water. The solution was refluxed at 60°C for 24 h to obtain the precipitates from the hydrolysis of Zn and dopants (Cu and Fe). The TEM results for ZnO with and without metal doping showed that the produced powders had a rod-like shape. The rod shape was attributable to the zinc oxide from the hydrolysis of Zn. With an increasing doping content, the UV-vis spectra were shifted to a long wavelength and this result indicates that the band gap was changed by the metal doping. The values of phenol degrading Fe- and Cu-doped ZnO by a solar simulator were measured to be 60 and 75%, respectively.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650039 ◽  
Author(s):  
Jingyuan Piao ◽  
Li-Ting Tseng ◽  
Kiyonori Suzuki ◽  
Jiabao Yi

Na-doped ZnO nanorods have been fabricated through a hydrothermal method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses indicate that the d spacing of ZnO increases with increasing doping concentration, suggesting the effective incorporation of dopant Na in the samples. Electron paramagnetic resonance (EPR) measurements indicate that there are shallow donors in pure ZnO samples and the shallow donors are strongly prohibited by Na doping. In addition, the resonance at g = 2.005 suggests the formation of Zn vacancies. Magnetic measurements indicate that pure ZnO is paramagnetic and Na doping leads to ferromagnetism at room temperature. Moreover, 0.5% Na-doped ZnO nanorods exhibits the largest saturation magnetization.


2015 ◽  
Vol 1109 ◽  
pp. 200-204 ◽  
Author(s):  
Q. Humayun ◽  
U. Hashim

Iron (Fe) doped ZnO nanorods were synthesized on glass substrate using a sol-gel hydrothermal growth method by adopting various concentration ratios of 0.8 at% Fe, 1 at% Fe and 3 at% Fe respectively. The X-ray diffraction (XRD) analysis show that all the grown ZnO nanorods have a hexagonal wurtzite structure and are preferentially oriented along the c-axis perpendicular to the substrate surface. At 3 at% Fe-doping, the crystalline quality and the preferential orientation of ZnO nanorods are improved and below 3 at% Fe-doping concentration crystalline quality and the preferential orientation of ZnO nanorods is weakened in turn. The surface morphology analysis of the samples show that the ZnO nanorods are grown vertically to the substrate surface and highly interconnected. Such interconnected network will facilitates the electron transport along the nanorods axis. Current-voltage and current-time characterization under the exposure of UV light ON/OFF sates with exhibited excellent current gain of 1.12 and good response/recovery time of 30 and 10 s showed that the fabricated device can be used for UV sensing applications.


2011 ◽  
Vol 189-193 ◽  
pp. 643-647
Author(s):  
Chuan Sheng Chen ◽  
Tian Gui Liu ◽  
Liang Wu Lin ◽  
Xi Li Xie ◽  
Zhen Wu Ning ◽  
...  

Mn-doped ZnO (Zn0.97Mn0.03O) nanorods were synthesized by sol-gel method combined with subsequent heat treatment. The structure and optical property of Mn-doped ZnO nanorods were studied by x-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and fluorescence. The results of electron microscopes illuminate that the Zn0.97Mn0.03O nanorods are prepared at calcinations of 450 under the protection of nitrogen. The Zn0.97Mn0.03O nanorods are composed of small particles of size 20–30 nm. Fluorescence spectra of Zn0.97Mn0.03O nanorods exhibit that there are two very strong blue emission peaks at 451 nm and 461nm except a strong UV emission at 396 nm.


2019 ◽  
Vol 26 (2) ◽  
pp. 121-126
Author(s):  
Xing WEN ◽  
Yue HAN ◽  
Cheng-Bao YAO ◽  
Ke-Xin ZHANG ◽  
Jin LI ◽  
...  

Copper (Cu)-doped ZnO (CZO) films were grown by simultaneous direct current and radio frequency magnetron sputtering technique under the situation of different gas flow rates of Ar: O2 (1:1, 2:1 and 1:0). The X-ray diffraction patterns revealed the naturally polycrystalline ZnO films with the predominant reflection (002) peak, which referred to the hexagonal wurtzite structure toward c-axis. The elemental composition of thin films was analyzed by energy dispersive spectroscopy (EDS). The Cu concentrations in thin films increased with Ar ratio of up to 1:0. The EDS spectra of three kinds of elements indicate that Cu-doping has obvious and sophisticated effect on the chemical state of oxygen, but less effect on those of copper and zinc. Furthermore, the nonlinear absorption of CZO films was investigated by the way of Z-scan technique. These films demonstrated good nonlinear absorption behavior for the different gas flow rates of Ar: O2.


2009 ◽  
Vol 620-622 ◽  
pp. 529-532
Author(s):  
Tie Kun Jia ◽  
Wei Min Wang ◽  
Zheng Yi Fu ◽  
Fei Huang ◽  
Hao Wang

La doped ZnO nanorods were synthesized via solvothermal technique using Zn(AC)2 and La(NO3)3 as starting materials. The products were characterized by X-ray diffraction (XRD), field scanning electron microscopy (FESEM) equipped with an energy dispersion X–ray (EDX) spectrometer, photoluminescence spectroscopy and UV-vis spectroscopy. The results of XRD in combination with EDS indicated that La was successful doped in ZnO. The obtained La doped ZnO sample exhibited nanorod like morphology and the diameter was about 30 nm. The photocatalytic property of La doped ZnO was evaluated by the variation of the concentration of RhB.


Author(s):  
My Hoa Tong ◽  
Thi Hoa Lai ◽  
Nhat Minh Nguyen ◽  
Thi Kieu Hanh Ta ◽  
Thanh Tuan Anh Pham ◽  
...  

: We report the antireflection and light absorption in visible region by new stretchable substrates with patterned structure. Mogul substrates with 3-Dimentional structures were fabricated by using polydimethyl – siloxane that imitate the nanostructures surface. Then, Copper doped ZnO NRs on mogul-patterned surface by hydrothermal method at low temperature. The optical properties, morphology and structures of ZnO:Cu NRs were investigated through out of measurement the scanning electron microscopy, X-Ray diffraction and ultraviolet-visible spectroscopy, respectively. The results show the Cu doped ZnO NRs were uniformly and dense grown on mogul substrates, well oriented in the (002) plane. Additionally, the light absorption can be significantly enhanced to more 10% in a wide spectral range (400-800 nm) due to the reduce reflection. Growing ZnO NRs doping on new stretchable substrates with a mogul-patterned surface were successfully fabricated and applicable in the flexible and stretchable optoelectronic devices.  


2021 ◽  
Author(s):  
Ashish Yengantiwar ◽  
Arun G Banpurkar

Abstract Ultraviolet (UV) photosensitive device was fabricated using ZnO nanorod array on substrate with copper electrodes. Facile open aqueous solution deposition technique was used to grow the ZnO nanorods forming an electrical bridge between copper electrodes. Powder X-ray diffraction patterns was used to confirm the polycrystalline wurtzite ZnO phase and scanning electron microscopy (SEM) techniques was employed to characterize the growth morphology of ZnO nanorods. A current-voltage (I-V) characterization in the dark exhibits the back-to-back diode characteristics. In the presence of ultraviolet (UV) radiation, enhanced photo-response was reported wherein photocurrent increases by two orders of magnitude at 2 V bias. This enhancement is mainly due to lateral interfacial contacts between neighboring grain-boundary of the nanorods arrays.


2010 ◽  
Vol 1253 ◽  
Author(s):  
Boqian Yang ◽  
Xiaoyan Peng ◽  
Hongxin Zhang ◽  
Peterxian Feng ◽  
Marc Achermann

AbstractUsing different pressures of nitrogen, N-doped ZnO nanorod arrays of various densities have been synthesized on quartz substrates by pulsed laser deposition techniques. The nanorods grow preferentially perpendicular to the quartz surface. X-ray diffraction patterns revealed some degradation of the crystal structure at elevated nitrogen pressures. High concentrations of nitrogen doping in ZnO nanorods were estimated by X-ray photoelectron spectroscopy. Raman scattering spectra confirmed the wurtzite structure of N-doped ZnO nanorods. A prototype sensor based on the N-doped ZnO nanorod arrays demonstrates a linear dependence of the conductivity with operating temperature and pressure of a test gas pollutant.


Sign in / Sign up

Export Citation Format

Share Document