Electrochemical Fabrication of SrTiO3 Nanowires with Nanoporous Alumina Template

2007 ◽  
Vol 7 (11) ◽  
pp. 4194-4197 ◽  
Author(s):  
Jinwook Kang ◽  
Jaemin Ryu ◽  
Eunseong Ko ◽  
Yongsug Tak

Strontium titanate nanowires were electrochemically synthesized with nanoporous alumina template. Both chemical and electrical variables such as electrolyte pH, temperature, and current wave-form were modulated to investigate the synthesis process of SrTiO3 nanowires. Superimposed cathodic pulse and diffusion time accelerated the growth of SrTiO3 nanowires, which suggested that the concentration of H+ and Sr2+ ion inside alumina template had a strong influence on the formation of SrTiO3 nanowires. Morphology and crystallinity of SrTiO3 nanowires were investigated with scanning electron microscope, X-ray diffractometer and energy dispersive X-ray spectroscopy.

2009 ◽  
Vol 610-613 ◽  
pp. 1150-1154
Author(s):  
Ai Lan Fan ◽  
Cheng Gang Zhi ◽  
Lin Hai Tian ◽  
Lin Qin ◽  
Bin Tang

The Mo surface modified layer on Ti6Al4V alloy was obtained by the plasma surface alloying technique. The structure and composition of the Mo modified Ti6Al4V alloy was investigated by X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GDOES). The Mo modified layer contains Mo coating on subsurface and diffusion layers between the subsurface and substrate. The X- ray diffraction analysis of the Mo modified Ti6Al4V alloy reveals that the outmost surface of the Mo modified Ti6Al4V alloy is composed of pure Mo. The electrochemical corrosion performance of the Mo modified Ti6Al4V alloy in 25°C Hank’s solution was investigated and compared with that of Ti6Al4V alloy. Results indicate that the self-corroding electric potential and the corrosion-rate of the Mo modified Ti6Al4V alloy are higher than that of Ti6Al4V alloy in 25°C Hank’s solution.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 325
Author(s):  
Sytle Antao

Synchrotron high-resolution powder X-ray diffraction (HRPXRD) and Rietveld structure refinements were used to examine the crystal structure of single phases and intergrowths (either two or three phases) in 13 samples of the helvine-group minerals, (Zn,Fe,Mn)8[Be6Si6O24]S2. The helvine structure was refined in the cubic space group P4¯3n. For the intergrowths, simultaneous refinements were carried out for each phase. The structural parameters for each phase in an intergrowth are only slightly different from each other. Each phase in an intergrowth has well-defined unit-cell and structural parameters that are significantly different from the three endmembers and these do not represent exsolution or immiscibility gaps in the ternary solid-solution series. The reason for the intergrowths in the helvine-group minerals is not clear considering the similar radii, identical charge, and diffusion among the interstitial M cations (Zn2+, Fe2+, and Mn2+) that are characteristic of elongated tetrahedral coordination. The difference between the radii of Zn2+ and Mn2+ cations is 10%. Depending on the availability of the M cations, intergrowths may occur as the temperature, pressure, fugacity fS2, and fluid composition change on crystallization. The Be–Si atoms are fully ordered. The Be–O and Si–O distances are nearly constant. Several structural parameters (Be–O–Si bridging angle, M–O, M–S, average <M–O/S>[4] distances, and TO4 rotational angles) vary linearly with the a unit-cell parameter across the series because of the size of the M cation.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Thérèse Gorisse ◽  
Ludovic Dupré ◽  
Marc Zelsmann ◽  
Alina Vlad ◽  
Alessandro Coati ◽  
...  

We report the successful use of in situ grazing incidence small-angle X-ray scattering to follow the anodization of aluminum. A dedicated electrochemical cell was designed and developed for this purpose with low X-ray absorption, with the possibility to access all azimuthal angles (360°) and to remotely control the temperature of the electrolyte. Three well-known fabrication techniques of nanoporous alumina, i.e., single, double, and pretextured, were investigated. The differences in the evolution of the scattering images are described and explained. From these measurements, we could determine at which moment the pores start growing even for very short anodization times. Furthermore, we could follow the thickness of the alumina layer as a function of the anodization time by monitoring the period of the Kiessig fringes. This work is aimed at helping to understand the different steps taking place during the anodization of aluminum at the very early stages of nanoporous alumina formation.


Author(s):  
Mahendran Samykano ◽  
Ram Mohan ◽  
Shyam Aravamudhan

This paper presents results and discussion from a comprehensive morphological and crystallographic characterization of nickel nanowires synthesized by template-based electrodeposition method. In particular, the influence of magnetic and electric field (current density) conditions during the synthesis of nickel nanowires was studied. The structure and morphology of the synthesized nanowires were studied using Helium ion microscopy (HIM) and scanning electron microscopy (SEM) methods. The HIM provided higher quality data and resolution compared to conventional SEM imaging. The crystallographic properties of the grown nanowires were also studied using X-ray diffraction (XRD). The results clearly indicated that the morphological and crystallographic properties of synthesized nickel nanowires were strongly influenced by the applied magnetic field and current density intensity during the synthesis process.


2020 ◽  
Vol 15 (4) ◽  
pp. 27-32
Author(s):  
Irina V. Milyukova ◽  
Marina P. Boronenko

The work is devoted to the technology for the reduction of molybdenum from oxides by the method of self-propagating high-temperature synthesis in the MoO3 AI system with the addition of aluminum. The experiment was carried out in two modes: in a reactor at different pressures without preliminary heating and in a furnace in air until the initiation of the SH-synthesis process. Samples of molybdenum metal were obtained in different synthesis modes. X-ray phase and X-ray spectral analysis showed that molybdenum is the main phase in the synthesized samples. The presence of slag oxide phases Al2O3 and MoO2 was detected.


2019 ◽  
Vol 57 (3A) ◽  
pp. 21
Author(s):  
Minh Truong Xuan Nguyen ◽  
Thu Thi Minh Bui ◽  
Cuc Thi Le ◽  
Linh Huu Nguyen ◽  
Y Ngoc Pham ◽  
...  

Nickel nanostructures prepared by various methods have received considerable attentions due to their numerous applications. In this study, one-dimensional nickel nanowires (NiNWs) were synthesized by the reduction of nickel (II) chloride in polyol medium. Poly (vinylpyrrolidone) (PVP) served as the surfactant and hydrazine hydrate was used as the reductant. The effects of different experimental parameters, i.e. concentration of Ni2+, volume of N2H4, concentration of PVP and reaction temperature on the formation and morphology of NiNWs were studied. The structure, composition and surface morphology of the materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the morphology as well as the diameter of NiNWs could be effectively controlled by adjusting parameters of the synthesis process.


2019 ◽  
Vol 37 (3) ◽  
pp. 389-394
Author(s):  
Setia Budi ◽  
Sukro Muhab ◽  
Agung Purwanto ◽  
Budhy Kurniawan ◽  
Azwar Manaf

AbstractThe effect of electrodeposition potential on the magnetic properties of the FeCoNi films has been reported in this paper. The FeCoNi electrodeposition was carried out from sulfate solution using potentiostatic technique. The obtained FeCoNi films were characterized by X-ray diffractometer (XRD), atomic absorption spectrometer (AAS) and vibrating sample magnetometer (VSM). It has been shown that the electrodeposition potential applied during the synthesis process determines the magnetic characteristics of FeCoNi films. The more negative potential is applied, the higher Ni content is in the FeCoNi alloy. At the same time, Co and Fe showed almost similar trend in which the content decreased with an increase in applied potential. The mean crystallite size of FeCoNi films was ranging from 11 nm to 15 nm. VSM evaluation indicated that the FeCoNi film is a ferromagnetic alloy with magnetic anisotropy. The high saturation magnetization of FeCoNi film was ranging from 86 A·m2/kg to 105 A·m2/kg. The film is a soft magnetic material which was revealed by a very low coercivity value in the range of 1.3 kA/m to 3.7 kA/m. Both the saturation magnetization and coercivity values decreased at a more negative electrodeposition potential.


2010 ◽  
Vol 177 ◽  
pp. 673-676 ◽  
Author(s):  
Jun Xue ◽  
Hou Kui Xiang ◽  
Hong Qiao Ding ◽  
Shu Li Pang ◽  
Xue Hua Wang ◽  
...  

Carbon encapsulated Fe-Cu alloys nanoparticles were synthesized by using ferric nitrate, copper nitrate as metal sources and using sucrose as carbon source. The synthesis process involved a step of hydrazine hydrate reduction in alcohol solution and a step of annealing carbonization. The as-prepared samples were characterized by X-ray diffraction technique, X-ray energy dispersion spectrograph, trans- mission electron microscopy and Raman spectroscopy. The results showed the sample was core / shell structure, the metalic core was crystalline FeCu4 alloy, the shell was amorphous carbon, and the average particle size was about 51nm. The magnetic measurement by using a vibrating sample magnetometer revealed that the sample has ultra-soft magnetic property with the saturation magnetization Ms of 13.01 emu/g, residual magnetization Mr of 0.37 emu/g and coercive forces Hc of 54.43 Oe at room temperature.


Sign in / Sign up

Export Citation Format

Share Document