Swift Synthesis of Hierarchically Ordered Mesocellular Mesoporous Silica by Microwave-Assisted Hydrothermal Method

2008 ◽  
Vol 8 (8) ◽  
pp. 3995-3998 ◽  
Author(s):  
You-Kyong Seo ◽  
I. Suryanarayana ◽  
Young Kyu Hwang ◽  
Namsoo Shin ◽  
Do-Cheon Ahn ◽  
...  

Hierarchically ordered mesocellular mesoporous silicas (HMMS) were swiftly synthesized using P123 and sodium silicate as a silica source within an hour by applying microwave irradiation without pore expander. The XRD, TEM and BET studies demonstrated that materials as-synthesized and calcined have the hierarchically ordered mesocellular structure with two different sizes about 10 nm and 30 nm pores having a minimized micropore volume compared with conventional hydrothermal method. Moreover, the HMMS sample prepared by microwave-assisted hydrothermal method had higher surface area than that of conventional hydrothermal method. The variation of the pore size and morphology of mesocellular structure varied with the aging time.

RSC Advances ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 10010-10017
Author(s):  
Ping-Chung Kuo ◽  
Zhi-Xun Lin ◽  
Tzi-Yi Wu ◽  
Chun-Han Hsu ◽  
Hong-Ping Lin ◽  
...  

Mesoporous silica films were used as supports with high loading capacity and enzyme activity.


2008 ◽  
Vol 55 ◽  
pp. 62-67 ◽  
Author(s):  
Priscila Samara Saran ◽  
Marco Antonio Utrera Martines ◽  
Hermi Felinto de Brito ◽  
Gustavo Rocha de Castro ◽  
Younes Messaddeq ◽  
...  

We report the effect of solvent on the rhodamine 6G encapsuled into channels of mesoporous silica, synthesized by two-step process that gives intermediary stable hybrid micelles. Mesoporous materials have been obtained by the method that involves surfactant micelles (mainly cationic) and inorganic precursor of the structure to be obtained. MSU-X type mesoporous silica has been synthesized with polyethylene oxide surfactant as the directing-structure agent and tetraethyl orthosilicate Si(OEt)4 as the silica source. The influence of the solvent on the encapsulation of rhodamine dye was systematically explored, specially its influence on the luminescence properties. Rhodamine 6G encapsuled into mesoporous silica channel was characterized by UV-Vis and luminescence spectroscopies, scanning electron microscopy, small angle x ray scattering and N2 sorption-desorption. The pore size and the solvent effects into luminescence dye encapsuled into mesoporous silica channels are observed in the visible absorption and emission spectra of rhodamine 6G. The intense photoluminescence band of rhodamine 6G dye is in 500 to 600 nm region. The observed shift of the absorption and emission bands can be assigned to the effect of the solvents dielectric constant and pore size of mesoporous silica.


2018 ◽  
Vol 44 (10) ◽  
pp. 11257-11264 ◽  
Author(s):  
Govindan Suresh Kumar ◽  
Gopalu Karunakaran ◽  
Easwaradas Kreedapathy Girija ◽  
Evgeny Kolesnikov ◽  
Nguyen Van Minh ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (49) ◽  
pp. 25920-25923 ◽  
Author(s):  
Shun-ichi Matsuura ◽  
Tomoya Baba ◽  
Manami Chiba ◽  
Tatsuo Tsunoda

The simple and selective immobilisation of a thermostable DNA polymerase on mesoporous silicas was achieved, and DNA amplification activity was retained under the pore-size regulation of the mesoporous silicas.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 971
Author(s):  
Alexandre Adam ◽  
Ksenia Parkhomenko ◽  
Paula Duenas-Ramirez ◽  
Clémence Nadal ◽  
Geoffrey Cotin ◽  
...  

The controlled design of robust, well reproducible, and functional nanomaterials made according to simple processes is of key importance to envision future applications. In the field of porous materials, tuning nanoparticle features such as specific area, pore size and morphology by adjusting simple parameters such as pH, temperature or solvent is highly needed. In this work, we address the tunable control of the pore morphology of mesoporous silica (MS) nanoparticles (NPs) with the sol-gel reaction temperature (Tsg). We show that the pore morphology of MS NPs alone or of MS shell covering iron oxide nanoparticles (IO NPs) can be easily tailored with Tsg orienting either towards stellar (ST) morphology (large radial pore of around 10 nm) below 80 °C or towards a worm-like (WL) morphology (small randomly oriented pores channel network, of 3–4 nm pore size) above 80 °C. The relaxometric and magnetothermal features of IO@STMS or IO@WLMS core shell NPs having respectively stellar or worm-like morphologies are compared and discussed to understand the role of the pore structure for MRI and magnetic hyperthermia applications.


Author(s):  
Norlin Pauzi ◽  
Norashikin Mat Zain ◽  
Nurul Amira Ahmad Yusof

The conventional heating methods of nanoparticle synthesis regularly depend on the energy inputs from outer heat sources that resulted high energy intake and low reaction competences. In this paper ZnO nanoparticles stabilized with gum arabic are synthesized using precipitating method assisted by simple and cost effective microwave heating technique. The objective of this work is to investigate the effect of microwave irradiation time towards ZnO nanoparticles morphology and size. The effect of microwave irradiation time has been investigated at 2, 4, 6, and 10 minutes. Dynamic Light Scattering (DLS) was employed to measure the size of ZnO nanoparticles. Ultraviolet–Visible spectroscopy (UV-vis), Fourier-Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) were used for the characterization of the ZnO nanoparticles. UV-vis absorption spectrum was found in the range of 350 nm indicating the absorption peak of ZnO nanoparticles. FTIR spectra showed peaks range from 424 to 475 cm–1 which indicating standard of Zn–O stretching. The presence of (100), (002), and (101) planes were apparent in the XRD result, indicating the crystalline phase of ZnO nanoparticles. The increase in the microwave irradiation time affected the processes of nucleation and crystal growth promoted larger ZnO nanoparticles size. Microwave irradiation time at 2 minutes was selected as the best microwave irradiation time for smallest ZnO nanoparticles averaging about 168 nm sizes based on DLS analysis. Copyright © 2019 BCREC Group. All rights reservedReceived: 1st October 2018; Revised: 22nd November 2018; Accepted: 12nd December 2018; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Pauzi, N., Zain, N.M., Yusof, N.A.A. (2019). Microwave-assisted Synthesis of ZnO Nanoparticles Stabilized with Gum Arabic: Effect of Microwave Irradiation Time on ZnO Nanoparticles Size and Morphology. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 182-188 (doi:10.9767/bcrec.14.1.3320.182-188)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.3320.182-188 


Sign in / Sign up

Export Citation Format

Share Document