scholarly journals Orienting the Pore Morphology of Core-Shell Magnetic Mesoporous Silica with the Sol-Gel Temperature. Influence on MRI and Magnetic Hyperthermia Properties

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 971
Author(s):  
Alexandre Adam ◽  
Ksenia Parkhomenko ◽  
Paula Duenas-Ramirez ◽  
Clémence Nadal ◽  
Geoffrey Cotin ◽  
...  

The controlled design of robust, well reproducible, and functional nanomaterials made according to simple processes is of key importance to envision future applications. In the field of porous materials, tuning nanoparticle features such as specific area, pore size and morphology by adjusting simple parameters such as pH, temperature or solvent is highly needed. In this work, we address the tunable control of the pore morphology of mesoporous silica (MS) nanoparticles (NPs) with the sol-gel reaction temperature (Tsg). We show that the pore morphology of MS NPs alone or of MS shell covering iron oxide nanoparticles (IO NPs) can be easily tailored with Tsg orienting either towards stellar (ST) morphology (large radial pore of around 10 nm) below 80 °C or towards a worm-like (WL) morphology (small randomly oriented pores channel network, of 3–4 nm pore size) above 80 °C. The relaxometric and magnetothermal features of IO@STMS or IO@WLMS core shell NPs having respectively stellar or worm-like morphologies are compared and discussed to understand the role of the pore structure for MRI and magnetic hyperthermia applications.

RSC Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 3749-3754 ◽  
Author(s):  
Hongri Suo ◽  
Haohong Duan ◽  
Chunping Chen ◽  
Jean-Charles Buffet ◽  
Dermot O'Hare

Core@shell materials which exhibit hierarchical morphology with ultra high surface area and controllable pore size and structure have been synthesised.


2017 ◽  
Vol 41 (24) ◽  
pp. 15334-15346 ◽  
Author(s):  
Madhappan Santha Moorthy ◽  
Bharathiraja Subramanian ◽  
Manivasagan Panchanathan ◽  
Sudip Mondal ◽  
Hyehyun Kim ◽  
...  

Fucoidan-coated FeNP@SiOH@Fuc NPs have been proposed for chemotherapy and thermal therapy applications in emerging cancer therapy.


2017 ◽  
Vol 41 (19) ◽  
pp. 10935-10947 ◽  
Author(s):  
Madhappan Santha Moorthy ◽  
Subramanian Bharathiraja ◽  
Panchanathan Manivasagan ◽  
Kang Dae Lee ◽  
Junghwan Oh

A “host–guest” complexation-based core–shell FeNP@SiOH@CET NP system was fabricated for chemotherapy and magnetic hyperthermia applications.


2007 ◽  
Vol 7 (1) ◽  
pp. 350-355 ◽  
Author(s):  
Shishou Kang ◽  
Shifan Shi ◽  
G. X. Miao ◽  
Zhiyong Jia ◽  
David E. Nikles ◽  
...  

Chemically synthesized FePt nanoparticles were coated with nonmagnetic SiO2 and MnO shells by sol–gel and polyol processes. TEM images show that the FePt/SiO2 nanoparticles exhibit a thick spherical shell. The size and morphology of the MnO shell can be controlled by changing the reaction temperature, the molar ratio of surfactants/Mn(acac)2, and/or the concentration of precursor. The morphology of the MnO shell can be either spherical-like or cubic-like, depending on whether the molar ratio of surfactants/Mn(acac)2 is less than or larger than 2. From XRD measurements, the spherical core/shell nanoparticles exhibit 3D random crystallographic orientation, while the cubic core/shell nanoparticles prefer (200) texture. The magnetic moment of FePt particles can be enhanced by coating with SiO2 and MnO shells. Furthermore, the agglomeration of FePt particles upon the thermal annealing can be significantly inhibited with SiO2 and MnO shells.


2008 ◽  
Vol 8 (8) ◽  
pp. 3995-3998 ◽  
Author(s):  
You-Kyong Seo ◽  
I. Suryanarayana ◽  
Young Kyu Hwang ◽  
Namsoo Shin ◽  
Do-Cheon Ahn ◽  
...  

Hierarchically ordered mesocellular mesoporous silicas (HMMS) were swiftly synthesized using P123 and sodium silicate as a silica source within an hour by applying microwave irradiation without pore expander. The XRD, TEM and BET studies demonstrated that materials as-synthesized and calcined have the hierarchically ordered mesocellular structure with two different sizes about 10 nm and 30 nm pores having a minimized micropore volume compared with conventional hydrothermal method. Moreover, the HMMS sample prepared by microwave-assisted hydrothermal method had higher surface area than that of conventional hydrothermal method. The variation of the pore size and morphology of mesocellular structure varied with the aging time.


2013 ◽  
Vol 52 (2) ◽  
pp. 779-784 ◽  
Author(s):  
Junia N. M. Batista ◽  
Emerson H. de Faria ◽  
Paulo S. Calefi ◽  
Katia J. Ciuffi ◽  
Eduardo J. Nassar ◽  
...  

1998 ◽  
Vol 4 (S2) ◽  
pp. 726-727
Author(s):  
C. A. Drewien ◽  
Y. Lu ◽  
C. J. Brinker ◽  
R. Ganguli ◽  
M. T. Anderson

Processing can be controlled to produce a family of mesoporous silica films with either disordered, lamellar, hexagonal, or cubic pore distributions[l]. These films, formed by surfactant-templated synthesis and exhibiting a unimodal pore size, promise potential use as inorganic membranes, catalysts, and optically-based sensors[l,2]. The mesoporous films can be formed from initially homogeneous silica sols by a continuous, surfactant-templated process, which relies upon solvent evaporation during the sol-gel dip-coating process. Films of 100-500 nm thick are formed within seconds in a continuous coating operation. The microstructure of the films is dependent upon the cationic surfactant concentration CTAB (CH3(CH2)15N+(CH3)3Br-) and the dip-coating rate. Several films, processed under differing conditions, were investigated by TEM to characterize pore size, structure, and orientation.Figures 1 a & b show the plan view and cross-sectional microstructure of a 2-d hexagonal mesoporous silica film deposited on silicon; the sample was calcined at 400 °C for 3 hours in air. The images were obtained on a Philips CM30 TEM, operated at 300 kV.


Sign in / Sign up

Export Citation Format

Share Document