Imaging Observation of Nano-Artificial Bone in the Repair of the Defect in Osteonecrosis of the Femoral Head

2020 ◽  
Vol 20 (12) ◽  
pp. 7775-7780
Author(s):  
Ziyan Li ◽  
Xiurong Yang ◽  
Shuang Liang ◽  
Hongyi Li ◽  
Linlin Hu ◽  
...  

To observe the effect of nano-artificial bone and bone marrow mesenchymal stem cells (BMSCs) in the treatment of femoral head osteonecrosis. The bilateral femoral head internal bone defect model was established and divided into three groups. Group A was used to make the defect without filling any material as the control, group B was only filled with nano-artificial bone, and group C was filled with composite materials of nano-artificial bone and bone marrow mesenchymal stem cells. The femoral head was examined using radiography and high-resolution focused 48-slice computed tomography (CT) at 12 weeks after implantation. A significant difference was found between groups B and C in the aspect of repairing the defect in osteogenesis of the femoral head as compared with the control group. Nano-collagen-based bone has strong osteogenic and osteogenic effects and is a good graft material for repairing bone defects of the femoral head. The use of bone marrow mesenchymal stem cells can promote the repair of bone defects, which is of great value in the treatment of osteonecrosis of the femoral head.

2022 ◽  
Vol 12 (2) ◽  
pp. 439-444
Author(s):  
Cuiping Qu ◽  
Yue Zhao ◽  
Huijuan Zhang ◽  
Wenshuang Xu ◽  
Xiaofeng Zhang

Dry eye disease (DED) is a common ocular surface disease. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into various cells, and BMSC-derived exosomes (BMSC-exo) is essential to maintaining BMSCs stemness. This study aimed to elucidate the mechanism underlying BMSCexo in DED. Sixty rats with corneal epithelial injury were treated with BMSCs or BMSC-exo and untreated (each group, n = 20) followed by analysis of the effect of BMSCs and BMSC-exo by evaluating the corneal epithelium damage via measuring the Basso-Beattie-Bresnahan (BBB) score on 1st, 3rd, 7th, 14th, 28th day after treatments. TUNEL staining assessed cell apoptosis, NF200 expression and the number of BrdU-positive cells. There was no significant difference in BBB scores among three groups on the 1st and 3rd day after treatment (p > 0.05) with significant difference on the 7th, 14th, and 28th day (p <0.05); compared with control group, BMSCs group and combination group had significantly higher BBB score (p < 0.05). The amount of apoptotic cells rose on 3rd and then gradually decreased since 7th day. Moreover, BMSCs and BMSC-exo decreased the apoptotic index and increased absorbance of NF200 and BrdU-positive rate (p < 0.05). BMSC-exo alleviates corneal epithelial damage in DED and facilitates wound healing possibly through reducing cell apoptosis and increasing retinal neuron-like cell proliferation protein.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weigang Li ◽  
Wenbin Liu ◽  
Wei Wang ◽  
Jiachen Wang ◽  
Tian Ma ◽  
...  

Abstract Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.


2022 ◽  
Vol 12 (5) ◽  
pp. 1034-1039
Author(s):  
Xiaoxiang Wang ◽  
Lan Yu ◽  
Xing Xiong ◽  
Yao Chen ◽  
Bo Men

Bone marrow mesenchymal stem cells (BMSCs) are capable of multipolar differentiation and repairing injured tissues. Herein, we aimed to investigate the mechanism by how BMSCs modulate the apoptotic pathway in the acute pancreatitis (AP). In this study, primary BMSCs were cultured and administrated into 10 AP mice while 10 healthy mice were taken as a blank group and 10 AP mice as a control group. The mouse pancreatic tissues were assessed by HE staining and evaluated by pancreatitis score and serum amylase detection. Level of inflammatory factors CRP and TNF-α was measured by ELISA and PIPK1, PIPK3, MLKL and Caspase-8 expression was detected by RT-qPCR and Western blot. The pancreatitis score (7.29±1.36) and the serum amylase score of (453.66±103.67) mu/ml of BMSCs group was significantly higher than that of control group, indicating increased tissue repair after BMSCs treatment. BMSCs group exhibited a higher level of CRP (711.01±115.31) and TNF-α (132.81±22.13) in serum compared to control group (p < 0.05). PIPK1, PIPK3, and MLKL expression in BMSCs group decreased (p < 0.05) whereas Caspase-8 was increased (p < 0.05). On the other hand, BMSCs group presented upregulated PIPK1, PIPK3, and MLKL (p < 0.05) and downregulated Caspase-8 (p < 0.05). In conclusion, BMSCs regulate cell apoptosis by upregulating Caspase-8 expression, and downregulating PIPK1, PIPK3 and MLKL level, thereby alleviating the inflammation in AP.


2020 ◽  
Vol 10 (12) ◽  
pp. 1865-1870
Author(s):  
Yang Ying ◽  
Binghao Zhao ◽  
Wei Qian ◽  
Li Xu

Bone marrow mesenchymal stem cells (BMSCs) have self-renewal potential with multi-directional differentiation. Progranulin prevents bone degradation, inhibits inflammation and protects bone tissue. However, the role of Progranulin in osteoporotic BMSCs is unclear. Osteoporosis (OP) rat models were prepared by ovarian removal and treated with different doses (5 and 10 μM) of Progranulin followed by analysis of BMP-2 level by ELISA, bone mineral density and ALP activity. OP rat BMSCs were isolated and assigned into control group and Progranulin group followed by analysis of Progranulin level by ELISA, cell proliferation by MTT assay, RUNX2 and COL1A1 mRNA level by Real time PCR, and PI3K/Akt/PPARγ signaling protein level by Western blot. Progranulin treatment of OP rats dose-dependently increased BMP-2 expression, bone density and ALP activity. Compared with OP group, there were significant differences (P <0.05). Progranulin expression and BMSCs proliferation was increased, and RUNX2 and COL1A1 mRNA expression was elevated in Progranulin-treated OP group along with increased PI3K/Akt expression and decreased PPARγ protein expression. Compared with OP group, the difference was statistically significant, and the change was more significant with increasing concentration (P <0.05). Progranulin promotes BMSCs osteogenic differentiation and proliferation by regulating PI3K/Akt/PPARγ signaling pathway, which is beneficial for OP rats’ bone synthesis.


2021 ◽  
Vol 11 (7) ◽  
pp. 1327-1332
Author(s):  
Long Zhou ◽  
Kui Wang ◽  
Meixia Liu ◽  
Wen Wei ◽  
Liu Liu ◽  
...  

NF-κB activation and its abnormal expression are involved in the progression of glioma. miRNA plays a crucial role in bone diseases. The role of NF-κB is becoming more and more important. The purpose of this study is to explore the mechanism by how miR-1 regulates NF-κB signaling. C57 glioma mouse models were divided into osteoporosis (OP) group and control group. qPCR was used to measure miR-1 levels in OP and control mice. Bone marrow mesenchymal stem cells (BMSCs) were cultured and transfected with miR-1 specific siRNA to establish miR-1 knockout cell model followed by analysis of cell apoptosis, expression of NF-κB signaling molecules by western blot. qPCR results showed that miR-1 levels in OP mice were significantly reduced compared to control mice. A large number of siRNA particles were observed in transfected BMSCs under a fluorescence microscope. qPCR results showed that siRNA transfection significantly suppressed miR-1, indicating successful transfection. Flow cytometry revealed significant differences in cell apoptosis between miR-1 siRNA group and the NC group. Western blot indicated miR-1 promoted BMSCs differentiation via NF-κB mediated up-regulation of ALP activity. The expression of miR-1 is low in BMSCs of mice with glioma. In addition, BMSCs differentiation is enhanced by NF-κB activation via up-regulating miR-1.


2020 ◽  
pp. 229255032096740
Author(s):  
Qin Yonghong ◽  
Li Aishu ◽  
Yazan Al-Ajam ◽  
Liao Yuting ◽  
Zhang Xuanfeng ◽  
...  

Current wound healing models generally employ full-thickness or irregular split wounds. Consequently, assessing the type of healing at varying wound depths and determining the deepest level at which wounds can regenerate has been a challenge. We describe a wound model that allows assessment of the healing process over a continuous gradient of wound depth, from epidermal to full-thickness dermal loss. Further, we investigate whether green fluorescent protein–labeled bone marrow mesenchymal stem cells (BM-MSCs/GFP) transplantation could regenerate deeper wounds that might otherwise lead to scar formation. A wound gradient was created on the back of 120 Sprague Dawley rats, which were randomized into the BM-MSCs/GFP and control group. These were further subdivided into 6 groups where terminal biopsies of the healing wounds were taken at days 1, 3, 5, 7, 14, and 21 post-operatively. At each observed time point, the experimental animals were anesthetized and photographed, and depending on the group, the animals euthanized and skin taken for rapid freezing, haemotoxylin and eosin staining, and vascular endothelial growth factor (VEGF) immunohistochemistry. We found the deepest layer to regenerate in the control group was at the level of the infundibulum apex, while in the BM-MSCs/GFP group this was deeper, at the opening site of sebaceous duct at hair follicle in which had the appearance of normal skin and less wound contraction than the control group ( P value less than .05). The expression of VEGF in BM-MSCs/GFP group was higher than that in control group ( P value less than .05). The number of vessels increased from 2.5 ± 0.2/phf of control group to 5.0 ± 0.3/phf of BM-MSCs/GFP ( P value less than .05). The progressively deepening wound model we described can identify the type of wound repair at increasing depths. Further, topical transplantation of BM-MSCs/GFP significantly improved regeneration of deeper wounds from infundibulum apex (maximum depth of control group regeneration) to the opening site of sebaceous duct at hair follicle level.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Aofei Yang ◽  
Chaochao Yu ◽  
Qilin Lu ◽  
Hao Li ◽  
Zhanghua Li ◽  
...  

Osteoporosis, femoral head necrosis, and congenital bone defects are orthopedic disorders characterized by reduced bone generation and insufficient bone mass. Bone regenerative therapy primarily relies on the bone marrow mesenchymal stem cells (BMSCs) and their ability to differentiate osteogenically. Icariin (ICA) is the active ingredient of Herba epimedii, a common herb used in traditional Chinese medicine (TCM) formulations, and can effectively enhance BMSC proliferation and osteogenesis. However, the underlying mechanism of ICA action in BMSCs is not completely clear. In this review, we provide an overview of the studies on the role and mechanism of action of ICA in BMSCs, to provide greater insights into its potential clinical use in bone regeneration.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Hang Zhao ◽  
Zhiying He ◽  
Dandan Huang ◽  
Jun Gao ◽  
Yanfang Gong ◽  
...  

Background & Aims. Severe acute pancreatitis (SAP) remains a high-mortality disease. Bone marrow (BM) mesenchymal stem cells (MSCs) have been demonstrated to have plasticity of transdifferentiation and to have immunomodulatory functions. In the present study, we assessed the roles of MSCs in SAP and the therapeutic effects of MSC on SAP after transplantation.Methods. A pancreatitis rat model was induced by the injection of taurocholic acid (TCA) into the pancreatic duct. After isolation and characterization of MSC from BM, MSC transplantation was conducted 24 hrs after SAP induction by tail vein injection. The survival rate was observed and MSCs were traced after transplantation. The expression of TNF-αand IL-1βmRNA in the transplantation group was also analyzed.Results. The survival rate of the transplantation group was significantly higher compared to the control group (p<0.05). Infused MSCs were detected in the pancreas and BM 3 days after transplantation. The expression of TNF-αand IL-1βmRNA in the transplantation group was significantly lower than in the control group in both the pancreas and the lungs (p<0.05).Conclusions. MSC transplantation could improve the prognosis of SAP rats. Engrafted MSCs have the capacity of homing, migration, and planting during the treatment of SAP.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chuan Tian ◽  
Jie He ◽  
Yuanyuan An ◽  
Zailing Yang ◽  
Donghai Yan ◽  
...  

Abstract Background Female sex hormone secretion and reproductive ability decrease with ageing. Bone marrow mesenchymal stem cells (BMMSCs) have been postulated to play a key role in treating ovarian ageing. Methods We used macaque ovarian ageing models to observe the structural and functional changes after juvenile BMMSC treatment. Moreover, RNA-seq was used to analyse the ovarian transcriptional expression profile and key pathways through which BMMSCs reverse ovarian ageing. Results In the elderly macaque models, the ovaries were atrophied, the regulation ability of sex hormones was reduced, the ovarian structure was destroyed, and only local atretic follicles were observed, in contrast with young rhesus monkeys. Intravenous infusion of BMMSCs in elderly macaques increased ovarian volume, strengthened the regulation ability of sex hormones, reduced the degree of pulmonary fibrosis, inhibited apoptosis, increased density of blood vessels, and promoted follicular regeneration. In addition, the ovarian expression characteristics of ageing-related genes of the elderly treatment group reverted to that of the young control group, 1258 genes that were differentially expressed, among which 415 genes upregulated with age were downregulated, 843 genes downregulated with age were upregulated after BMMSC treatment, and the top 20 differentially expressed genes (DEGs) in the protein-protein interaction (PPI) network were significantly enriched in oocyte meiosis and progesterone-mediated oocyte maturation pathways. Conclusion The BMMSCs derived from juvenile macaques can reverse ovarian ageing in elderly macaques.


Sign in / Sign up

Export Citation Format

Share Document