Effects of Microwave-Assisted Heat Treatments on the Nanostructural Evolution of Amorphous Silicon Oxycarbide Thin Films

2021 ◽  
Vol 21 (9) ◽  
pp. 4797-4806
Author(s):  
Sang-Hyuk Lee ◽  
Han-Sol Yun ◽  
Byeong-Gyu Yun ◽  
Nam-Hee Cho

This study investigated the effects of heat treatment on changes in the nanostructure of amorphous silicon oxycarbide thin films. Hydrogenated amorphous silicon oxycarbide (a-Si0.6C0.3O0.1:H) thin films were prepared via plasma-enhanced chemical vapor deposition. The films were subjected to post-deposition heat treatments via microwave-assisted heating, which resulted in the formation of nanocrystals of SiC and Si in the a-Si0.6C0.3O0.1:H matrix at temperatures as low as ~800 °C. The crystallization activation energies of SiC and Si were determined to be 1.32 and 1.04 eV, respectively lower than those obtained when the sample was heat-treated via conventional heating (CH). Microwaves can be used to fabricate nanocrystals at a temperature approximately ~300 °C lower than that required for CH. The optical and nanostructural evolutions after post-deposition heat treatments were examined using photoluminescence (PL) and X-ray diffraction. The position of the PL peaks of the nanocrystals varied from ~425 to ~510 nm as the annealing temperature was increased from 800 to 1000 °C. In this study the optical band gap of SiC and Si varied from ~2.92 to ~2.40 eV and from ~2.00 to ~1.79 eV, as the size of the SiC and Si nanocrystals varied with respect to the heating temperature and isothermal holding time, respectively.

2011 ◽  
Vol 383-390 ◽  
pp. 6980-6985
Author(s):  
Mao Yang Wu ◽  
Wei Li ◽  
Jun Wei Fu ◽  
Yi Jiao Qiu ◽  
Ya Dong Jiang

Hydrogenated amorphous silicon (a-Si:H) thin films doped with both Phosphor and Nitrogen are deposited by ratio frequency plasma enhanced chemical vapor deposition (PECVD). The effect of gas flow rate of ammonia (FrNH3) on the composition, microstructure and optical properties of the films has been investigated by X-ray photoelectron spectroscopy, Raman spectroscopy and ellipsometric spectra, respectively. The results show that with the increase of FrNH3, Si-N bonds appear while the short-range order deteriorate in the films. Besides, the optical properties of N-doped n-type a-Si:H thin films can be easily controlled in a PECVD system.


2011 ◽  
Vol 317-319 ◽  
pp. 341-344
Author(s):  
Long Gu ◽  
Hui Dong Yang ◽  
Bo Huang

Amorphous Silicon-germanium films were prepared by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on glass substrates. The structural characteristics, deposition rate, photosensitivity, and optical band gap of the silicon-germanium thin films were investigated with plasma power varying from 15W to 45W. The deposition rate increased within a certain range of plasma power. With the plasma power increasing, the photosensitivity of the thin films decreased. It is evident that varying the plasma power changes the deposition rate, photosensitivity, which was fundamentally crucial for the fabrication of a-Si/a-SiGe/a-SiGe stacked solar cells. For our deposition system, the most optimization value was 30-35W.


2011 ◽  
Author(s):  
Vasileios Nikas ◽  
Spyros Gallis ◽  
Himani Suhag ◽  
Mengbing Huang ◽  
Alain E. Kaloyeros

Sign in / Sign up

Export Citation Format

Share Document