Soret and Dufour Effects on Hydromagnetic Flow of H2O-Based Nanofluids Induced by an Exponentially Expanding Sheet Saturated in a Non-Darcian Porous Medium

2021 ◽  
Vol 10 (4) ◽  
pp. 506-517
Author(s):  
A. K. Singha ◽  
G. S. Seth ◽  
Krishnendu Bhattacharyya ◽  
Dhananjay Yadav ◽  
Ajeet Kumar Verma ◽  
...  

Diffusion-thermo effect (Dufour effect) and thermal-diffusion effect (Soret effect) on an MHD flow through porous medium taking nanoparticles may be considered to be useful in many engineering problems when there is a species concentration along with the solid nanoparticles. To study such an attracting problem, it is necessary to consider the flow to be single-phase. In the present investigation, the hydromagnetic flow of H2O-based nanofluids due to an exponentially expanding sheet saturated in non-Darcian porous material is examined with Dufour and Soret effects. In addition, temperature and species concentration along the surface in flow distribution are considered to be variable exponentially. Two sorts of nanofluids are considered, to be specific, Cu–H2O and Ag–H2O. Use of proper similarity transformations transfers the governing PDEs to coupled ODEs. Then the solutions of the coupled equations are computed by very efficient shooting method. Non-dimensionless velocity species concentration and temperature are introduced in graphical mode for several values of involved parameters. Out of several obtained outcomes, it is noticeable that similar to the magnetic parameter and permeability parameter, due to increase in non-Darcy Forchheimer parameter velocity diminishes and while temperature and species concentration increments are witnessed. Due to presence of Dufour effect, temperature enhances and similarly, the concentration increases for Soret effect. While due to Dufour effect, the concentration initially decreases, but away from surface it increases and similar behaviour is found for temperature in the case of Soret effect. Also, it is obtained that skin-friction coefficient for Cu–H2O nanofluid is larger than it value for Ag–H2O nanofluid. Dufour effect turns into the reason for the reduction of Nusselt number and increment of Sherwood number for both nanofluids, but Soret effect affects the two nanofluids reversely. The analysis and its findings provide some tools which may be applied in engineering and industrial problems.

2018 ◽  
Vol 389 ◽  
pp. 71-85
Author(s):  
Oluwole Daniel Makinde ◽  
Venkateswarlu Malapati ◽  
R.L. Monaledi

The paper examines the combined effects of Hall current, buoyancy forces, thermal radiation, thermo-diffusion and fluid rotation on an unsteady hydromagmetic boundary layer flow with heat and mass transfer over an impulsively moving vertical plate embedded in a porous medium. Base on some realistic simplified assumptions, the governing equations of momentum, energy and chemical species concentration are obtained and tackled analytically using Laplace transform technique. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically while those of skin friction coefficient, Nusselt number and Sherwood number are presented in tabular form for different values of pertinent flow parameters.


2009 ◽  
Vol 14 (3) ◽  
pp. 303-314 ◽  
Author(s):  
S. P. Anjali Devi ◽  
B. Ganga

This paper investigates the influence of both viscous and joules dissipation on the problem of magnetohydrodynamic flow past a stretching porous surface embedded in a porous medium. Analytic solutions of the resulting nonlinear non-homogeneous boundary value problem in the case when the plate stretches with a velocity varying linearly with distance, expressed in terms of confluent hypergeometric functions, are presented for the case of prescribed surface temperature. Numerical calculations have been carried out for various values of suction parameter, magnetic field, Prandtl number, Eckert number and Schmidt number. The results show that increases in magnetic parameter decrease both the dimensionless transverse velocity, longitudinal velocity and also the skin friction coefficient. Also, formation of thin boundary layer is observed for higher value of magnetic parameter.


2020 ◽  
Vol 68 (1) ◽  
pp. 1-10
Author(s):  
Lavanya

The present paper is concerned to analyze the effect of hall current on heat and thermal radiation and mass transfer of unsteady MHD flow of a viscoelastic micropolar fluid through a porous medium with chemical reaction. The governing partial differential equations are transformed to dimensionless equations using dimensionless variables. The dimensionless governing equations are then solved analytically using perturbation technique. The effects of various governing parameters on the velocity, temperature, concentration, skin-friction coefficient, Nusselt number and Sherwood number are shown in figures and tables and analyzed in detail.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1523
Author(s):  
Haroon Ur Rasheed ◽  
Saeed Islam ◽  
Maha M. Helmi ◽  
Sam Alsallami ◽  
Zeeshan Khan ◽  
...  

This research investigates the influence of the combined effect of the chemically reactive and thermal radiation on electrically conductive stagnation point flow of nanofluid flow in the presence of a stationary magnetic field. Furthermore, the effect of Newtonian heating, thermal dissipation, and activation energy are considered. The boundary layer theory developed the constitutive partial differential momentum, energy, and diffusion balance equations. The fundamental flow model is changed to a system of coupled ordinary differential equations (ODEs) via proper transformations. These nonlinear-coupled equations are addressed analytically by implementing an efficient analytical method, in which a Mathematica 11.0 programming code is developed for numerical simulation. For optimizing system accuracy, stability and convergence analyses are carried out. The consequences of dimensionless parameters on flow fields are investigated to gain insight into the physical parameters. The result of these physical constraints on momentum and thermal boundary layers, along with concentration profiles, are discussed and demonstrated via plotted graphs. The computational outcomes of skin friction coefficient, mass, and heat transfer rate under the influence of appropriate parameters are demonstrated graphically.


2021 ◽  
Vol 8 (1) ◽  
pp. 25-32
Author(s):  
Sachidananda Sahoo ◽  
Kishore Kumar Prusty ◽  
Satyaranjan Mishra

The present study reveals the heat and mass transfer on the MHD flow of micropolar fluid in a porous medium within a rotating frame. In order to facilitate osillatory plate velocity with constant suction and first order chemical reaction has been considered. Using small perturbation approximation, the governing non-dimensional equations are solved. The influence of pertinent physical quantities on the flow phenomena have been presented graphically. The skin friction coefficient, wall couple stress, Nusselt and Sherwood number have also computed for different flow parameters and have presented in table. In the study, the applied magnetic field sets in to produce the resistive force i.e. the Lorentz force that resists the fluid motion throughout the domain. Attenuation in the Prandtl number is because of the slower thermal diffusivity resulted in a sharp reduction in the thermal boundary layer thickness. The retardation in the polar fluid concentration is greater in amount for the influence of heavier species.


2018 ◽  
Vol 389 ◽  
pp. 128-137 ◽  
Author(s):  
Hamza Berrehal ◽  
Abdelaziz Maougal ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

This paper is devoted to find analytic approximate solution by optimal homotopy asymptotic method (OHAM) for the problem of nonlinear boundary layer flow. Two-dimensional magneto-hydrodynamic (MHD) flow of a viscous fluid over a moving wedge in porous medium with suction/injection is investigated. Governing equations are transformed by similarity method into a third order Falkner-Skan equation and solved analytically using OHAM. This approach is highly efficient, ensuring a very rapid convergence of the solution only after one iteration. Graphical results are presented to discuss the effects of various parameters on velocity profiles. Further, the skin friction coefficient is also tabulated and compared with the corresponding results available in literature. Our results were found in an excellent agreement.


1970 ◽  
Vol 3 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Md Abdus Samad ◽  
Mohammad Mansur-Rahman

A study of unsteady MHD free convection flow through a porous vertical flat plate immersed in a porous medium in presence of magnetic field with radiation has been analyzed. Introducing a time dependent suction to the plate, a similarity procedure has been adopted by taking a time dependent similarity parameter. In this analysis we consider a Darcy-Forchhemier model and the corresponding momentum and energy equations have been solved numerically, for cooling and heating of the plate by employing Nachtsheim-Swigert iteration technique along with the sixth order Runge-Kutta integration scheme. Non-dimensional velocity and temperature profiles are then presented graphically for different values of the parameter entering into the problem. During the process of numerical computations the skin-friction coefficient (viscous drag) and the rate of heat transfer (Nusselt number), which are of physical interest, are sorted out and presented in the form of tables. Keywords: Thermal radiation, MHD, Unsteady, Suction, Porous medium   DOI: 10.3329/jname.v3i1.924Journal of Naval Architecture and Marine Engineering 3(2006) 7-14


1970 ◽  
Vol 2 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Md Shariful Alam ◽  
Mohammad Mansur Rahman

A two-dimensional steady MHD free convection and mass transfer flow past a semi-infinite vertical porous plate in a porous medium has been studied numerically including the Dufour and Soret effects. The resulting momentum, energy and concentration equations are then made similar by introducing the usual similarity transformations. These similar equations are then solved numerically by using the Nachtsheim-Swigert shooting method along with Runge-Kutta sixth order integration scheme. The numerical results are displayed graphically showing the effects of various parameters entering into the problem. Finally, the local values of the skin-friction coefficient (Cf), Nusselt number (Nu) and Sherwood number (Sh) are also shown in tabular form. Keywords: MHD, Free convection, Vertical plate, Steady flow, Porous medium, Dufour effect, Soret effect. doi: 10.3329/jname.v2i1.2030 Journal of Naval Architecture and Marine Engineering 2(1)(2005) 55-65


Sign in / Sign up

Export Citation Format

Share Document