On the Analytic Solution of Magnetohydrodynamic (MHD) Flow by a Moving Wedge in Porous Medium

2018 ◽  
Vol 389 ◽  
pp. 128-137 ◽  
Author(s):  
Hamza Berrehal ◽  
Abdelaziz Maougal ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

This paper is devoted to find analytic approximate solution by optimal homotopy asymptotic method (OHAM) for the problem of nonlinear boundary layer flow. Two-dimensional magneto-hydrodynamic (MHD) flow of a viscous fluid over a moving wedge in porous medium with suction/injection is investigated. Governing equations are transformed by similarity method into a third order Falkner-Skan equation and solved analytically using OHAM. This approach is highly efficient, ensuring a very rapid convergence of the solution only after one iteration. Graphical results are presented to discuss the effects of various parameters on velocity profiles. Further, the skin friction coefficient is also tabulated and compared with the corresponding results available in literature. Our results were found in an excellent agreement.

2020 ◽  
Vol 68 (1) ◽  
pp. 1-10
Author(s):  
Lavanya

The present paper is concerned to analyze the effect of hall current on heat and thermal radiation and mass transfer of unsteady MHD flow of a viscoelastic micropolar fluid through a porous medium with chemical reaction. The governing partial differential equations are transformed to dimensionless equations using dimensionless variables. The dimensionless governing equations are then solved analytically using perturbation technique. The effects of various governing parameters on the velocity, temperature, concentration, skin-friction coefficient, Nusselt number and Sherwood number are shown in figures and tables and analyzed in detail.


2018 ◽  
Vol 389 ◽  
pp. 71-85
Author(s):  
Oluwole Daniel Makinde ◽  
Venkateswarlu Malapati ◽  
R.L. Monaledi

The paper examines the combined effects of Hall current, buoyancy forces, thermal radiation, thermo-diffusion and fluid rotation on an unsteady hydromagmetic boundary layer flow with heat and mass transfer over an impulsively moving vertical plate embedded in a porous medium. Base on some realistic simplified assumptions, the governing equations of momentum, energy and chemical species concentration are obtained and tackled analytically using Laplace transform technique. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically while those of skin friction coefficient, Nusselt number and Sherwood number are presented in tabular form for different values of pertinent flow parameters.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
O. D. Makinde ◽  
P. Sibanda

The problem of steady laminar hydromagnetic heat transfer by mixed convection flow over a vertical plate embedded in a uniform porous medium in the presence of a uniform normal magnetic field is studied. Convective heat transfer through porous media has wide applications in engineering problems such as in high temperature heat exchangers and in insulation problems. We construct solutions for the free convection boundary-layer flow equations using an Adomian–Padé approximation method that in the recent past has proven to be an able alternative to the traditional numerical techniques. The effects of the various flow parameters such as the Eckert, Hartmann, and Schmidt numbers on the skin friction coefficient and the concentration, velocity, and temperature profiles are discussed and presented graphically. A comparison of our results with those obtained using traditional numerical methods in earlier studies is made, and the results show an excellent agreement. The results demonstrate the reliability and the efficiency of the Adomian–Padé method in an unbounded domain.


2009 ◽  
Vol 13 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Pushkar Sharma ◽  
Gurminder Singh

Aim of the paper is to investigate effects of ohmic heating and viscous dissipation on steady flow of a viscous incompressible electrically conducting fluid in the presence of uniform transverse magnetic field and variable free stream near a stagnation point on a stretching non-conducting isothermal sheet. The governing equations of continuity, momentum, and energy are transformed into ordinary differential equations and solved numerically using Runge-Kutta fourth order with shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically, and their numerical values for various values of physical parameters are compared with earlier results and presented through tables.


2009 ◽  
Vol 14 (3) ◽  
pp. 303-314 ◽  
Author(s):  
S. P. Anjali Devi ◽  
B. Ganga

This paper investigates the influence of both viscous and joules dissipation on the problem of magnetohydrodynamic flow past a stretching porous surface embedded in a porous medium. Analytic solutions of the resulting nonlinear non-homogeneous boundary value problem in the case when the plate stretches with a velocity varying linearly with distance, expressed in terms of confluent hypergeometric functions, are presented for the case of prescribed surface temperature. Numerical calculations have been carried out for various values of suction parameter, magnetic field, Prandtl number, Eckert number and Schmidt number. The results show that increases in magnetic parameter decrease both the dimensionless transverse velocity, longitudinal velocity and also the skin friction coefficient. Also, formation of thin boundary layer is observed for higher value of magnetic parameter.


2014 ◽  
Vol 44 (2) ◽  
pp. 149-157
Author(s):  
A. M. RASHAD

 A boundary-layer analysis is presented for the natural convec tion boundary layer flow about a sphere embedded in a porous medium filled with a nanofluid using Brinkman-ForchheimerDarcy extended model. The model used for the nanofluid incorporates the ef fects of Brownian motion and thermophoresis. The governing partial differential equa tions are transformed into a set of nonsimilar equations and solved numerically by an efficient implicit, iterative, finite-difference method. Comparisons with previously published work are performed and excellent agreement is obtained. A parametric study of the physical parameters is conducted and a representative set of numerical results for the velocity, temperature, and nanoparticles volume fraction profiles as well as the local skin-friction coefficient, local Nusselt and Sherwood numbers is illustrated graphically to show interesting features of the solutions.


2019 ◽  
Vol 16 (2) ◽  
pp. 390-408 ◽  
Author(s):  
Memoona Bibi ◽  
Muhammad Sohail ◽  
Rahila Naz

Purpose The purpose of this paper is to perform an analytical approximation for the flow of magnetohydrodynamic Carreau fluid with the association of nanoparticles over a rotating disk. The disk is moving with a constant uniform speed. Governing equations are obtained by using these assumptions in the form of partial differential equations with boundary conditions. These coupled, highly nonlinear equations are transformed into a coupled system of ordinary differential equations by engaging similarity transformation in the rotating frame of reference. Design/methodology/approach An efficient and reliable scheme, namely optimal homotopy asymptotic method, is used to obtain the solutions of the arising physical problem, which is further analyzed graphically. After computing the solutions of the arising problem, plots of velocities, temperature and concentration are discussed briefly. Findings It has been observed that dimensionless velocity reduced due to magnetic effect between the boundary layer and escalating values of the magnetic parameter upsurges the temperature and concentration profiles. Contour plots and numerical results are given for local numbers like skin friction coefficient, Nusselt number and Sherwood number. Originality/value The work presented in this manuscript is neither published nor submitted anywhere for the consideration/publications. It is a novel work.


2016 ◽  
Vol 21 (1) ◽  
pp. 121-141 ◽  
Author(s):  
K.V. Prasad ◽  
H. Vaidya ◽  
K. Vajravelu ◽  
P.S. Datti ◽  
V. Umesh

Abstract The present analysis is focused on the study of the magnetic effect on coupled heat and mass transfer by mixed convection boundary layer flow over a slender cylinder in the presence of a chemical reaction. The buoyancy effect due to thermal diffusion and species diffusion is investigated. Employing suitable similarity transformations, the governing equations are transformed into a system of coupled non-linear ordinary differential equations and are solved numerically via the implicit, iterative, second order finite difference method. The numerical results obtained are compared with the available results in the literature for some special cases and the results are found to be in excellent agreement. The velocity, temperature, and the concentration profiles are presented graphically and analyzed for several sets of the pertinent parameters. The pooled effect of the thermal and mass Grashof number is to enhance the velocity and is quite the opposite for temperature and the concentration fields.


2018 ◽  
Vol 22 (2) ◽  
pp. 857-870 ◽  
Author(s):  
Mohamed Abdel-Wahed ◽  
Tarek Emam

The present work provides an analysis of the hydromagnetic nanofluid boundary-layer flow over a rotating disk in a porous medium with a constant velocity in the presence of hall current and thermal radiation. The governing PDE system that describes the problem is converted to a system of ODE by the similarity transformation method, which solved analytically using optimal homotopy asymptotic method. The velocity profiles and temperature profiles of the boundary-layer are plotted and investigated in details. Moreover, the surface skin friction, rate of heat transfer are deduced and explained in details.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Raja Mehmood Khan ◽  
Waqas Ashraf ◽  
Muhammad Sohail ◽  
Shao-Wen Yao ◽  
Wael Al-Kouz

In this paper, the concept of microstructural slip is introduced in the flow of micropolar fluids pertinent to model various physical situations. The flow is modeled by a set of PDEs which are transformed to a nonlinear system of ODEs by employing boundary layer transformations. The system of governing equations is implemented using MATLAB bvp4c function along with the initial-boundary conditions. The code is validated by comparing the computed results in the limiting case with the available literature. Influence of microstructural slip on the skin friction coefficient and Nusselt number along with hydrodynamic and thermal boundary layer profiles is studied and discussed. It is found that, in the presence of microstructural slip, the microrotational velocity boundary layer thickness decreases up to a maximum of 37.5% in its value, in comparison to the case where there is no microstructural slip effect. The results predict that, in the presence of first-order translational slip, the microrotations have shown counterrotational phenomena in comparison to the case where there is no translational slip effect. Moreover, second-order translational slip results in declining the microrotational velocity and associated layer thickness.


Sign in / Sign up

Export Citation Format

Share Document