Sisal Fiber Reinforced Recycled Polypropylene (rPP) Biocomposite: Characterization of Mechanical, Thermal and Morphological Properties

2015 ◽  
Vol 4 (2) ◽  
pp. 170-178 ◽  
Author(s):  
Md. Naushad ◽  
S. K. Nayak ◽  
Smita Mohanty
2021 ◽  
Author(s):  
Atik Mubarak Kazi ◽  
Ramasastry D. V. A. ◽  
Sunil Waddar

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Genetu A. Dress ◽  
M. H. Woldemariam ◽  
D. T. Redda

Woven natural fiber reinforced polymer composites have better tensile, flexural, and compressive strength compared to the mechanical properties of unidirectional and randomly oriented NFRPC because of the interlacing of fiber bundles. However, the characterization of impact behavior with different fiber orientation such as 30°/60°, 0/90°, 30°/−45°, and 45°/−45° woven sisal fiber reinforced polyester composite was not studied vigorously. Thus, this paper focuses on the experimental characterization of the impact resistance behavior on woven sisal fiber reinforced polyester composite materials for semistructural part by using Izod impact testing setup. The 30°/60°, 30°/−45°, 0°/90°, and 45°/−45° woven sisal fiber was prepared using nailed wooden frame as a warp and weft guider. The woven sisal fiber was impregnated in order to make woven sisal fiber dimensionally stable. Using 40% by weight of fiber and 60% by weight of polyester, the composite was developed using hand layup process. The morphology and cross-sectional elemental detection was carried out using scanning electron microscope (SEM) assessment in leather development institute (LDI). Finally, impact tests were carried out using Izod impact testing setup in Addis Ababa Science and Technology University (ASTU). The average impact strength of a 40 wt% fiber 45°/−45° woven sisal fiber reinforced unsaturated polyester composite (WSFRPC) test specimen with consecutive warp and weft tow spacing of 2 mm was 342.67 J/m and this was greater energy compared to the other orientations. But the average impact strength of a 40 wt% fiber 30°/60° WSFRPC of test specimen with consecutive warp and weft tow spacing of 2 mm was 241.33 J/m.


2016 ◽  
Vol 51 (8) ◽  
pp. 1087-1097 ◽  
Author(s):  
Md Naushad ◽  
Sanjay K Nayak ◽  
Smita Mohanty ◽  
Bishnu P Panda

Sisal fiber (SF) reinforced recycled polypropylene biocomposites were prepared by melt blending technique. Biocomposites prepared with the incorporation of 40 wt% untreated sisal fiber loading showed a marginal improvement in mechanical properties as compared with matrix recycled polypropylene. SF surface was mercerized and maleic anhydride grafted polypropylene was used as a coupling agent for better fiber matrix interfacial bonding. Mercerized sisal fiber reinforced biocomposites prepared with compatibilizer (maleic anhydride grafted polypropylene) shows significant improvement in tensile and flexural strength. Damage tolerance of recycled polypropylene matrix and its biocomposites were evaluated in monotonic and cyclic tensile test. Untreated sisal fiber reinforced biocomposites prepared with maleic anhydride grafted polypropylene shows improvement in damage tolerance compared with untreated sisal fiber biocomposites. Impact fractured morphology of biocomposites revealed better interfacial bonding between fiber, maleic anhydride grafted polypropylene, and recycled polypropylene matrix.


Author(s):  
Dawit Getu ◽  
Ramesh Babu Nallamothu ◽  
Muluken Masresha ◽  
Seshu Kishan Nallamothu ◽  
Anantha Kamal Nallamothu

2022 ◽  
Vol 23 (1) ◽  
pp. 329-338
Author(s):  
Gerges Naguib

Mechanical properties of polyester/glass fiber reinforced by multiwalled carbon nanotubes (MWCNTs) were studied. MWCNTs nano particles are mixed within resin in various weight fractions of 0.1, 0.2, 0.4 and 0.6 % using sonication. E-Glass fiber (chopped strand mat) is used in various weight fractions within the composite like 80/20 wt%, 70/30 wt%, 50/50 wt% to fabricate polyester/CSM/MWCNTs composites. The effect of the addition of MWCNTs nanoparticles on the mechanical characteristics such as hardness and tensile strength were investigated. The effect of various E-glass fiber chopped strand mat (CSM) wt.% reinforcement is also investigated. A scanning electron microscope (SEM) was used to show the nanocomposites morphological properties such as reinforcement orientation and the bonding between matrix and fiber. It was found that the addition of 0.4 wt% MWCNTs improves the mechanical properties of composites, especially the 50 wt% polyester / 50 wt% CSM composite. The tensile strength improved by 39.8%, and the hardness improved by 38%. ABSTRAK: Ciri-ciri mekanikal bagi poliester / gelas fiber diperkukuh dengan dinding berbilang karbon nanotiub (MWCNTs) dikaji. Partikel nano MWCNT telah dicampur ke dalam resin pelbagai berat pada pecahan 0.1, 0.2, 0.4 dan 0.6 % menggunakan sonikasi. Gentian Kaca-E (potongan lembaran) telah digunakan dalam pelbagai pecahan berat dalam komposit 80/20 wt%, 70/30 wt%, 50/50 wt% bagi menghasilkan komposit poliester/CSM/MWCNT. Kesan penambahan nanopartikel MWCNT pada ciri-ciri mekanikal seperti kekerasan dan kekuatan tensil diuji. Kesan pelbagai gentian Kaca-E (potongan lembaran) (CSM) wt.% bersama agen pengukuh turut dikaji. Pengimbas Mikroskop Elektron (SEM) digunakan bagi menilai ciri-ciri morfologi komposit nano seperti orientasi pengukuh dan ikatan antara matrik dan gentian. Dapatan kajian menunjukkan dengan penambahan sebanyak 0.4 wt% MWCNT dapat memperbaiki ciri-ciri mekanikal komposit terutama komposit campuran (50 wt% polyester / 50 wt% CSM). Ketahanan tensil meningkat sebanyak 39.8%, dan kekerasan telah bertambah sebanyak 38%.


2019 ◽  
Vol 219 ◽  
pp. 44-55 ◽  
Author(s):  
Claudia Brito de Carvalho Bello ◽  
Ingrid Boem ◽  
Antonella Cecchi ◽  
Natalino Gattesco ◽  
Daniel V. Oliveira

2019 ◽  
Vol 58 (2) ◽  
pp. 275-289 ◽  
Author(s):  
Bing Wang ◽  
Kanza Hina ◽  
Hantao Zou ◽  
Li Cui ◽  
Danying Zuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document