Multifunctional double network hydrogel film for skin wound healing

2021 ◽  
Vol 11 (7) ◽  
pp. 1084-1091
Author(s):  
Ning Liang ◽  
Lei Wu ◽  
Yao Yang

Skin wound management is an important issue in the medical community. Herein, we report a multifunctional film with many advanced features as a dressing for the healing of wounds. The dressing was made using chitosan and poly(acrylamide) (pAAm) hydrogel in order to form a double network (DN) hydrogel film. Compared to the pure chitosan hydrogel, which is fragile, the added pAAm network conferred excellent mechanical capability to the composite film, making it flexible and easy to treat. By further doping the hydrogel with carbon nanotubes and drugs, the film could promote wound healing. Animal experiments demonstrated that the DN hydrogel film could reduce inflammation and promote tissue regeneration. Thus, this film is promising as a treatment for wound healing.

2019 ◽  
Vol 5 (7) ◽  
pp. eaaw3963 ◽  
Author(s):  
S. O. Blacklow ◽  
J. Li ◽  
B. R. Freedman ◽  
M. Zeidi ◽  
C. Chen ◽  
...  

Inspired by embryonic wound closure, we present mechanically active dressings to accelerate wound healing. Conventional dressings passively aid healing by maintaining moisture at wound sites. Recent developments have focused on drug and cell delivery to drive a healing process, but these methods are often complicated by drug side effects, sophisticated fabrication, and high cost. Here, we present novel active adhesive dressings consisting of thermoresponsive tough adhesive hydrogels that combine high stretchability, toughness, tissue adhesion, and antimicrobial function. They adhere strongly to the skin and actively contract wounds, in response to exposure to the skin temperature. In vitro and in vivo studies demonstrate their efficacy in accelerating and supporting skin wound healing. Finite element models validate and refine the wound contraction process enabled by these active adhesive dressings. This mechanobiological approach opens new avenues for wound management and may find broad utility in applications ranging from regenerative medicine to soft robotics.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 573 ◽  
Author(s):  
Yuyu Qiu ◽  
Qingqing Wang ◽  
Yajun Chen ◽  
Shufang Xia ◽  
Wei Huang ◽  
...  

To develop a wound dressing material that conforms to the healing process, we prepared a multilayer composite (MC) membrane consisting of an antibacterial layer (ABL), a reinforcement layer (RFL), and a healing promotion layer (HPL). Biocompatible zein/ethyl cellulose (zein/EC) electrospun nanofibrous membranes with in situ loaded antibacterial photosensitizer protoporphyrin (PPIX) and healing promotion material vaccarin (Vac) were, respectively, chosen as the ABL on the surface and the HPL on the bottom, between which nonwoven incorporated bacterial cellulose (BC/PETN) as the HPL was intercalated to enhance the mechanical property. Photodynamic antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa was confirmed by the enlarged inhibition zones; meanwhile, satisfactory biocompatibility of the HPL was verified by scanning electronic microscopy (SEM) of L929 cells cultured on its surface. The potential effects on wound healing in a mice skin defect model of the MC membranes were also evaluated. The animal experiments demonstrated that the wound healing rate in the MC group was significantly increased compared with that in the control group (p < 0.05). Histopathological observation revealed an alleviated inflammatory response, accompanied with vascular proliferation in the MC group. The MC membranes significantly promoted wound healing by creating an antibacterial environment and promoting angiogenesis. Taken together, this MC membrane may act as a promising wound dressing for skin wound healing.


2020 ◽  
Vol 12 (52) ◽  
pp. 57782-57797
Author(s):  
Bo Yang ◽  
Jiliang Song ◽  
Yuhang Jiang ◽  
Ming Li ◽  
Jingjing Wei ◽  
...  

2020 ◽  
Vol 28 (7) ◽  
pp. 791-802
Author(s):  
Tae Hoon Park ◽  
Sumi Lee ◽  
Reeju Amatya ◽  
Pooja Maharjan ◽  
Hye-Jin Kim ◽  
...  

2021 ◽  
pp. 117870
Author(s):  
Yuxin He ◽  
Yang Li ◽  
Yadong Sun ◽  
Shijia Zhao ◽  
Miao Feng ◽  
...  

2021 ◽  
Vol 7 (4) ◽  
pp. 247
Author(s):  
Sariya Mapoung ◽  
Sonthaya Umsumarng ◽  
Warathit Semmarath ◽  
Punnida Arjsri ◽  
Pilaiporn Thippraphan ◽  
...  

Auricularia auricula-judae, a nutrient-rich mushroom used in traditional medicine, is a macrofungi that exhibits various biological properties. In this study, we have reported on the mechanisms that promote the wound-healing effects of a water-soluble polysaccharide-rich extract obtained from A. auricula-judae (AAP). AAP contained high amounts of polysaccharides (349.83 ± 5.00 mg/g extract) with a molecular weight of 158 kDa. The main sugar composition of AAP includes mannose, galactose, and glucose. AAP displayed antioxidant activity in vitro and was able to abort UVB-induced intracellular ROS production in human fibroblasts in cellulo. AAP significantly promoted both fibroblast and keratinocyte proliferation, migration, and invasion, along with augmentation of the wound-healing process by increasing collagen synthesis and decreasing E-cadherin expression (All p < 0.05). Specifically, the AAP significantly accelerated the wound closure in a mice skin wound-healing model on day 9 (2.5%AAP, p = 0.031 vs. control) and day 12 (1% and 2.5%AAP with p = 0.009 and p < 0.001 vs. control, respectively). Overall, our results indicate that the wound-healing activities of AAP can be applied in an AAP-based product for wound management.


2015 ◽  
Vol 36 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Bizunesh M. Borena ◽  
Ann Martens ◽  
Sarah Y. Broeckx ◽  
Evelyne Meyer ◽  
Koen Chiers ◽  
...  

Mammal skin has a crucial function in several life-preserving processes such as hydration, protection against chemicals and pathogens, initialization of vitamin D synthesis, excretion and heat regulation. Severe damage of the skin may therefore be life-threatening. Skin wound repair is a multiphased, yet well-orchestrated process including the interaction of various cell types, growth factors and cytokines aiming at closure of the skin and preferably resulting in tissue repair. Regardless various therapeutic modalities targeting at enhancing wound healing, the development of novel approaches for this pathology remains a clinical challenge. The time-consuming conservative wound management is mainly restricted to wound repair rather than restitution of the tissue integrity (the so-called “restitutio ad integrum”). Therefore, there is a continued search towards more efficacious wound therapies to reduce health care burden, provide patients with long-term relief and ultimately scarless wound healing. Recent in vivo and in vitro studies on the use of skin wound regenerative therapies provide encouraging results, but more protracted studies will have to determine whether the effect of observed effects are clinically significant and whether regeneration rather than repair can be achieved. For all the aforementioned reasons, this article reviews the emerging field of regenerative skin wound healing in mammals with particular emphasis on growth factor- and stem cell-based therapies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongqing Zhao ◽  
Min Wang ◽  
Feng Liang ◽  
Jiannan Li

AbstractSkin wound healing is a multi-stage process that depends on the coordination of multiple cells and mediators. Chronic or non-healing wounds resulting from the dysregulation of this process represent a challenge for the healthcare system. For skin wound management, there are various approaches to tissue recovery. For decades, stem cell therapy has made outstanding achievements in wound regeneration. Three major types of stem cells, including embryonic stem cells, adult stem cells, and induced pluripotent stem cells, have been explored intensely. Mostly, mesenchymal stem cells are thought to be an extensive cell type for tissue repair. However, the limited cell efficacy and the underutilized therapeutic potential remain to be addressed. Exploring novel and advanced treatments to enhance stem cell efficacy is an urgent need. Diverse strategies are applied to maintain cell survival and increase cell functionality. In this study, we outline current approaches aiming to improve the beneficial outcomes of cell therapy to better grasp clinical cell transformation.


2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


Sign in / Sign up

Export Citation Format

Share Document