Stiffness Measurement of Micro-Cantilever Based on Negative Electrostatic Stiffness

2020 ◽  
Vol 12 (1) ◽  
pp. 96-100
Author(s):  
Xianshan Dong ◽  
Qinwen Huang ◽  
Yun Huang ◽  
Wei Su ◽  
Ping Lai

Micro-cantilever is basic structure of Micro-Electro-Mechanical-Systems (MEMS) sensor, and mechanical stiffness is the most important parameter of micro-cantilever. The mechanical stiffness can be affected by shape, size and material, and it should be experimentally measured for fabrication variation. Yet, the micro scale of MEMS cantilever makes the measurement difficult, and the traditional method isn't suitable for the micro-cantilever. This study proposes a new method for measuring the mechanical stiffness of micro-cantilever, and measurement of MEMS accelerometer was also experimentally carried out. The proposed method exploits the feature that the voltage applied on cantilever can lead to negative electrostatic stiffness, and this stiffness can change the deformation of cantilever. The mechanical stiffness can be obtained through analyzing the change of output. Results from this study coincided with our theoretical model, and the difference between results obtained by this method and SEM was 2.2%. This work provides a new way to precisely obtain mechanical stiffness of micro-cantilever using non-destructive method, making it helpful for researchers to design micro-cantilever and MEMS devices.

2021 ◽  
Vol 55 (1) ◽  
pp. 5-16
Author(s):  
Yongqiang Ge ◽  
Jiawang Chen ◽  
Chen Cao ◽  
Jiamin He ◽  
Yan Sheng ◽  
...  

AbstractSubmarine landslides in gas hydrate areas are a significant geo-hazard that can cause considerable damage. The processes and mechanism of submarine landslides caused by gas hydrate dissociation are not clearly understood. Therefore, we designed a micro-electro-mechanical systems (MEMS) accelerometer array to study and monitor the deep displacement of submarine landslides. The MEMS accelerometer array consists of several gravity acceleration-sensing units that are protected and positioned using a flexible circuit board and elastic steel tape, such that all the units are connected to an Inter-Integrated Circuit (IIC) communication bus. By sensing the three-axis tilt angles, the direction and magnitude of the displacement for a measurement unit can be calculated; then, the overall displacement of the array is calculated as the difference in the displacements from the initial values. To ensure the accuracy of the tilt angle and displacement calculation, the calibration and verification test of the single MEMS sensor and sensor array is conducted. The MEMS accelerometer array is verified with respect to its principle and arrangement by a laboratory physical model test, and the initial experimentation demonstrated the capacities of the monitoring system for collecting real-time and in-situ information about the dynamic process and propagation of slope failure.


Author(s):  
Manish Kumar Mishra ◽  
Vikas Dubey ◽  
P. M. Mishra ◽  
Isharat Khan

This review article through light on a highly promising & demanding technology, which is set to revolutionize nearly every product category in present era, while discussing the Concept, Design & Development, Fabrication techniques and applications of micro electro-mechanical systems (MEMS) based Devices or systems. Microelectromechanical system discloses outstanding flexibility and adaptability in miniaturization devices followed by their compact dimension, low power consumption, and fine performance. The MEMS devices have numerous and very high potentials of creating a new field of applications for mobile equipment’s with increased flexibility & more reliability. This work deals with research carried out for the development of MEMS based sensors & Actuators and appropriate uses of MEMS. This work carries information’s regarding subsequent commercial and real life applications of MEMS and discusses various recent technological innovations carried out with their advantages & disadvantages. This work also describes the historical development of micro-electromechanical system (MEMS) sensor technology.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 102
Author(s):  
Yurong He ◽  
Chaowei Si ◽  
Guowei Han ◽  
Yongmei Zhao ◽  
Jin Ning ◽  
...  

In this paper, we report a novel teeter-totter type accelerometer based on glass-silicon composite wafers. Unlike the ordinary micro-electro-mechanical systems (MEMS) accelerometers, the entire structure of the accelerometer, includes the mass, the springs, and the composite wafer. The composite wafer is expected to serve as the electrical feedthrough and the fixed capacitance plate at the same time, to simplify the fabrication process, and to save on chip area. It is manufactured by filling melted borosilicate glass into an etched silicon wafer and polishing the wafer flat. A sensitivity of 51.622 mV/g in the range of ±5 g (g = 9.8 m/s2), a zero-bias stability under 0.2 mg, and the noise floor with 11.28 µg/√Hz were obtained, which meet the needs of most acceleration detecting applications. The micromachining solution is beneficial for vertical interconnection and miniaturization of MEMS devices.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7462
Author(s):  
Mariusz Jankowski ◽  
Piotr Zając ◽  
Piotr Amrozik ◽  
Michał Szermer ◽  
Cezary Maj ◽  
...  

In this work, we analysed the difference between the measurement and simulation results of thermal drift of a custom designed capacitive MEMS accelerometer. It was manufactured in X-FAB XMB10 technology together with a dedicated readout circuit in X-FAB XP018 technology. It turned out that the temperature sensitivity of the sensor’s output is nonlinear and particularly strong in the negative Celsius temperature range. It was found that the temperature drift is mainly caused by the MEMS sensor and the influence of the readout circuit is minimal. Moreover, the measurements showed that this temperature dependence is the same regardless of applied acceleration. Simulation of the accelerometer’s model allowed us to estimate the contribution of post-manufacturing mismatch on the thermal drift; for our sensor, the mismatch-induced drift accounted for about 6% of total thermal drift. It is argued that the remaining 94% of the drift could be a result of the presence of residual stress in the structure after fabrication.


Author(s):  
Hsien-Wen Liu ◽  
King-Ting Chiang ◽  
Tao-Chi Liu ◽  
Ming-Lun Chang ◽  
Jandel Lin

Abstract Applications of Micro-Electro-Mechanical Systems (MEMS) sensors have developed rapidly in the last decade, increasing the need of Failure Analysis (FA) to characterize abnormalities and to identify failure modes of various types of MEMS devices. One of the greatest challenges is removal of the sealing cap from the MEMS device without any impact to the moveable sensing elements. A novel non-destructive technique has been successfully developed using KOH wet chemical etching followed by application of ex-situ hand sticking to deprocess the sealing cap from an accelerometer device. This new approach provides a quick and reliable way to remove the sealing cap from a MEMS device.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 63
Author(s):  
Konstantinos Karyotis ◽  
Theodora Angelopoulou ◽  
Nikolaos Tziolas ◽  
Evgenia Palaiologou ◽  
Nikiforos Samarinas ◽  
...  

Soil properties estimation with the use of reflectance spectroscopy has met major advances over the last decades. Their non-destructive nature and their high accuracy capacity enabled a breakthrough in the efficiency of performing soil analysis against conventional laboratory techniques. As the need for rapid, low cost, and accurate soil properties’ estimations increases, micro electro mechanical systems (MEMS) have been introduced and are becoming applicable for informed decision making in various domains. This work presents the assessment of a MEMS sensor (1750–2150 nm) in estimating clay and soil organic carbon (SOC) contents. The sensor was first tested under various experimental setups (different working distances and light intensities) through its similarity assessment (Spectral Angle Mapper) to the measurements of a spectroradiometer of the full 350–2500 nm range that was used as reference. MEMS performance was evaluated over spectra measured from 102 samples in laboratory conditions. Models’ calibrations were performed using random forest (RF) and partial least squares regression (PLSR). The results provide insights that MEMS could be employed for soil properties estimation, since the RF model demonstrated solid performance over both clay (R2 = 0.85) and SOC (R2 = 0.80). These findings pave the way for supporting daily agriculture applications and land related policies through the exploration of a wider set of soil properties.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3564
Author(s):  
Michał Szermer ◽  
Piotr Zając ◽  
Piotr Amrozik ◽  
Cezary Maj ◽  
Mariusz Jankowski ◽  
...  

The constant development and miniaturization of MEMS sensors invariably provides new possibilities for their use in health-related and medical applications. The application of MEMS devices in posturographic systems allows faster diagnosis and significantly facilitates the work of medical staff. MEMS accelerometers constitute a vital part of such systems, particularly those intended for monitoring patients with imbalance disorders. The correct design of such sensors is crucial for gathering data about patient movement and ensuring the good overall performance of the entire system. This paper presents the design and measurements of a three-axis accelerometer dedicated for use in a device which tracks patient movement. Its main focus is the characterization of the sensor, comparing different designs and evaluating the impact of the packaging and readout circuit integration on sensor operation. Extensive testing and measurements confirm that the designed accelerometer works correctly and allows identifying the best design in terms of sensitivity/stability. Moreover, the response of the proposed sensor as a function of the applied acceleration demonstrates very good linearity only if the readout circuit is integrated in the same package as the MEMS sensor.


1991 ◽  
Vol 240 ◽  
Author(s):  
F. Uchida ◽  
J. Shigeta ◽  
Y. SUZUKI

ABSTRACTA non-destructive characterization technique featuring a hard X-ray Microprobe is demonstrated for lll-V semiconductor device structures. A GaAs FET with a 2 μm gate length is measured as a model sample of a thin film structure. X-ray scanning microscopic images of the FET are obtained by diffracted X-ray and fluorescence X-ray detection. Diffracted X-ray detection measures the difference in gate material and source or drain material as a gray level difference on the image due to the X-ray absorption ratio. Ni Ka fluorescence detection, on the other hand, provides imaging of 500 Å thick Ni layers, which are contained only in the source and drain metals, through non-destructive observation.


2014 ◽  
Vol 68 (5) ◽  
pp. 629-641 ◽  
Author(s):  
Tatjana Djakov ◽  
Ivanka Popovic ◽  
Ljubinka Rajakovic

Micro-electro-mechanical systems (MEMS) are miniturized devices that can sense the environment, process and analyze information, and respond with a variety of mechanical and electrical actuators. MEMS consists of mechanical elements, sensors, actuators, electrical and electronics devices on a common silicon substrate. Micro-electro-mechanical systems are becoming a vital technology for modern society. Some of the advantages of MEMS devices are: very small size, very low power consumption, low cost, easy to integrate into systems or modify, small thermal constant, high resistance to vibration, shock and radiation, batch fabricated in large arrays, improved thermal expansion tolerance. MEMS technology is increasingly penetrating into our lives and improving quality of life, similar to what we experienced in the microelectronics revolution. Commercial opportunities for MEMS are rapidly growing in broad application areas, including biomedical, telecommunication, security, entertainment, aerospace, and more in both the consumer and industrial sectors on a global scale. As a breakthrough technology, MEMS is building synergy between previously unrelated fields such as biology and microelectronics. Many new MEMS and nanotechnology applications will emerge, expanding beyond that which is currently identified or known. MEMS are definitely technology for 21st century.


Sign in / Sign up

Export Citation Format

Share Document