Development and Optimization of a Nanostructured Lipid Carrier Based Gel Formulation of Etoricoxib for Topical Delivery Using Box-Behnken Design: In Vitro and Ex Vivo Evaluation

2015 ◽  
Vol 7 (8) ◽  
pp. 1567-1580 ◽  
Author(s):  
Abdul Hafeez ◽  
Mohd. Aqil ◽  
Asgar Ali
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Saeed Ebrahimi ◽  
Reza Mahjub ◽  
Rasool Haddadi ◽  
Seyed Yaser Vafaei

Cationic nanocapsules represent a promising approach for topical delivery purposes. We elaborated on a novel formulation based on the cationic nanocapsules to enhance the pharmacodynamic efficacy, user compliance, and photostability of tretinoin (TTN). To achieve this goal, TTN nanocapsules were prepared by the nanoprecipitation method. In order to statistically optimize formulation variables, a Box-Behnken design, using Design-Expert software, was employed. Three independent variables were evaluated: total weight of the cationic acrylic polymer ( X 1 ), oil volume ( X 2 ), and TTN amount ( X 3 ). The particle size and encapsulation efficiency percent (EE%) were selected as dependent variables. The optimal formulation demonstrated spherical morphology under scanning electron microscopy (SEM), optimum particle size of 116.3 nm, and high EE% of 83.2%. TTN-loaded nanocapsules improved photostability compared to its methanolic solution. The in vitro release study data showed that tretinoin was released in a sustained manner compared to the free drug. The ex vivo skin permeation study demonstrated that greater drug deposition into the epidermal region rather than the deep skin was observed with a gel containing TTN-loaded nanocapsules than that of drug solution, respectively. The skin irritation test revealed that the nanoencapsulation of the drug decreased its irritancy compared to the free drug. These results revealed the promising potential of cationic nanocapsules for topical delivery of tretinoin


Author(s):  
Pallavi M Chaudhari ◽  
Madhavi A Kuchekar

Objective: The aim of this study was to develop a nanoemulsion for topical delivery. Methods: Topical nanoemulsion was prepared by homogenization method. Box-behnken design was utilized to study the effect of oil, surfactant and Co-surfactant, on droplet size, entrapment efficiency and drug release. Nabumetone a non-steroidal anti-inflammatory drug was incorporated in castor oil with Tween 80 and Polyethylene glycol 600 to form the nanoemulsion by homogenization method. The nanoemulsion was further subjected to different evaluation parameters and ex-vivo study. The crystalline nature of drug was confirmed by powder X-ray diffraction studies. Drug-excipient compatibility was confirmed by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), respectively. Results: The average globule size of nabumetone-containing nanoemulsion decreased with decrease in concentration of oil and surfactant. Nanoemulsion was evaluated by pH, rheology, globule size, zeta potential, scanning electron microscopy, DSC, FTIR spectroscopy, and stability. In vitro drug release shows maximum 84.35% permeation rate through cellophane membrane and ex-vivo drug release shows 86.32% permeation rate through goat skin. Conclusion: Thus, the nanoemulsion formulated showed good results regarding topical delivery.


2019 ◽  
Vol 52 ◽  
pp. 303-315 ◽  
Author(s):  
Tejashree Waghule ◽  
Vamshi Krishna Rapalli ◽  
Gautam Singhvi ◽  
Prachi Manchanda ◽  
Neha Hans ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 310 ◽  
Author(s):  
Stella Zsikó ◽  
Kendra Cutcher ◽  
Anita Kovács ◽  
Mária Budai-Szűcs ◽  
Attila Gácsi ◽  
...  

The aim of this research was to investigate the stability of a lidocaine-loaded nanostructured lipid carrier dispersion at different temperatures, formulate a nanostructured lipid carrier gel, and test the penetration profile of lidocaine from the nanostructured lipid carrier gel using different skin penetration modeling methods. The formulations were characterized by laser diffraction, rheological measurements and microscopic examinations. Various in vitro methods were used to study drug release, diffusion and penetration. Two types of vertical Franz diffusion cells with three different membranes, including cellulose, Strat-M®, and heat separated human epidermis were used and compared to the Skin-parallel artificial membrane permeability assay (PAMPA) method. Results indicated that the nanostructured lipid carrier dispersion had to be gelified as soon as possible for proper stability. Both the Skin-PAMPA model and Strat-M® membranes correlated favorably with heat separated human epidermis in this research, with the Strat-M® membranes sharing the most similar drug permeability profile to an ex vivo human skin model. Our experimental findings suggest that even when the best available in vitro experiment is selected for modeling human skin penetration to study nanostructured lipid carrier gel systems, relevant in vitro/in vivo correlation should be made to calculate the drug release/permeation in vivo. Future investigations in this field are still needed to demonstrate the influence of membranes and equipment from other classes on other drug candidates.


2017 ◽  
Vol 225 ◽  
pp. 475-481 ◽  
Author(s):  
Deepak Bisht ◽  
Devina Verma ◽  
Mohd. Aamir Mirza ◽  
Md. Khalid Anwer ◽  
Zeenat Iqbal
Keyword(s):  
Ex Vivo ◽  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 448 ◽  
Author(s):  
Narendar Dudhipala ◽  
Thirupathi Gorre

Parkinson’s disease (rp) is a progressive neurodegenerative disorder. Ropinirole (RP) is a newer generation dopamine agonist used for the treatment of PD. It is prescribed as oral dosage form. However, limited oral bioavailability and frequent dosing limits the RP usage. The objective of the current investigation was to develop, optimize, evaluate pharmacokinetic (PK) and pharmacodynamic (PCD) activity of RP loaded solid lipid nanoparticles (RP-SLNs) and nanostructured lipid carriers (RP-NLCs) and containing hydrogel (RP-SLN-C and RP-NLC-C) formulations for improved oral and topical delivery. RP loaded lipid nanoparticles were optimized and converted to hydrogel using carbopol 934 as the gelling polymer. PK and PCD studies in haloperidol-induced PD were conducted in male Wistar rats. In vitro and ex vivo permeation studies showed sustained release profile and enhanced permeation compared with control formulations. Differential scanning calorimeter and X-ray diffraction studies revealed amorphous transformation; scanning electron microscope showed the spherical shape of RP in lipid nanoparticles. PK studies showed 2.1 and 2.7-folds enhancement from RP-SLN and RP-NLC from oral administration, 3.0 and 3.3-folds enhancement from RP-SLN-C and RP-NLC-C topical administration, compared with control formulations, respectively. RP-SLN-C and RP-NLC-C showed 1.4 and 1.2-folds topical bioavailability enhancement compared with RP-SLN and RP-NLC oral administration, respectively. PCD studies showed enhanced dopamine, glutathione, catalase levels and reduced lipid peroxidation levels, compared with the haloperidol-induced PD model. Overall, the results demonstrated that lipid nanoparticles and corresponding hydrogel formulations can be considered as an alternative delivery approach for the improved oral and topical delivery of RP for the effective treatment of PD.


Sign in / Sign up

Export Citation Format

Share Document