RGD-Tagged Microbubbles Generated by Versatile Fabrication Protocols for In Vitro Cell Targeting and In Vivo Mouse Imaging of Tumor Vascularization

2020 ◽  
Vol 12 (5) ◽  
pp. 725-732
Author(s):  
Fangfang Yu ◽  
Jiaping Li ◽  
Yan Yang ◽  
Yueyue Cheng ◽  
Xianwei Ni ◽  
...  

By using an organic framework to fabricate functional biomaterials, novel design and advanced biomedical applications of polymeric microbubbles for in vivo targeting and disease-oriented imaging of tumor vascularization can be developed. The present study describes novel synthetic protocols to fabricate RGD (Arginine-Glycine-Aspartic)-tagged αvβ3-targeted ultrasound microbubbles. The microbubbles were synthesized by emulsion polymerization techniques. Two types of microbubbles (MBs-1 and MBs-2) were obtained via biotin-streptavidin conjugation to poly(butyl cyanoacrylate) microbubbles (MBs-0) obtained by one-step synthesis in reverse order. The size distributions and surface zeta potentials were characterized. The results showed that the sizes of the MBs-2 were larger than that those of the MBs-1, and the MBs-2 showed decreased charge compared to MBs-1. In cell targeting studies, MBs-2 exhibited relatively stronger targeting affinity for αvβ3 integrins, while MBs-1 showed weaker targeting capability. Furthermore, in vivo mice imaging using MBs-2 for intravenous injection exhibited an obvious and sustained signal increase, which revealed the accumulative of MBs-2 anchoring in tumor. Hence, MBs-2 have been proven to be a promising candidate for using as ultrasound contrast agents for the early diagnosis of αvβ3-overexpressing malignant tumors, including breast cancer.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Arifudin Achmad ◽  
Aiko Yamaguchi ◽  
Hirofumi Hanaoka ◽  
Yoshito Tsushima

Shell thickness determines the acoustic response of polymer-based perfluorooctyl bromide (PFOB) nanocapsule ultrasound contrast agents. PEGylation provides stealth property and arms for targeting moieties. We investigated a modulation in the polymer formulation of carboxy-terminated poly(D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide-co-glycolide)-block-polyethylene glycol (PLGA-b-PEG) to produce thin-shelled PFOB nanocapsules while keeping its echogenicity, stealth property, and active targeting potential. Polymer formulation contains 40% PLGA-PEG that yields the PEGylated PFOB nanocapsules of approximately 150 nm size with average thickness-to-radius ratio down to 0.15, which adequately hindered phagocytosis. Functionalization with antibody enables in vitro tumor-specific targeting. Despite the acoustic response improvement, the in vivo tumor accumulation was inadequate to generate an observable acoustic response to the ultrasound power at the clinical level. The use of PLGA and PLGA-PEG polymer blend allows the production of thin-shelled PFOB nanocapsules with echogenicity improvement while maintaining its potential for specific targeting.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Qingxia Wei ◽  
Olivia Singh ◽  
Can Ekinci ◽  
Jaspreet Gill ◽  
Mira Li ◽  
...  

AbstractOne of the most prominent features of glioblastoma (GBM) is hyper-vascularization. Bone marrow-derived macrophages are actively recruited to the tumor and referred to as glioma-associated macrophages (GAMs) which are thought to provide a critical role in tumor neo-vascularization. However, the mechanisms by which GAMs regulate endothelial cells (ECs) in the process of tumor vascularization and response to anti-angiogenic therapy (AATx) is not well-understood. Here we show that GBM cells secrete IL-8 and CCL2 which stimulate GAMs to produce TNFα. Subsequently, TNFα induces a distinct gene expression signature of activated ECs including VCAM-1, ICAM-1, CXCL5, and CXCL10. Inhibition of TNFα blocks GAM-induced EC activation both in vitro and in vivo and improve survival in mouse glioma models. Importantly we show that high TNFα expression predicts worse response to Bevacizumab in GBM patients. We further demonstrated in mouse model that treatment with B20.4.1.1, the mouse analog of Bevacizumab, increased macrophage recruitment to the tumor area and correlated with upregulated TNFα expression in GAMs and increased EC activation, which may be responsible for the failure of AATx in GBMs. These results suggest TNFα is a novel therapeutic that may reverse resistance to AATx. Future clinical studies should be aimed at inhibiting TNFα as a concurrent therapy in GBMs.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Xiaoxiong Wang ◽  
Heping Wang ◽  
Jiajun Xu ◽  
Xu Hou ◽  
Haoqiang Zhan ◽  
...  

AbstractHigh-grade glioma is the most common and aggressive primary brain tumor in adults with poor therapeutic efficiency and survival prognosis. Cell division cycle associated 8 (CDCA8) has been well known as a cell cycle regulator and tumor promotor in various malignant tumors. However, its biological role in glioma still remains unclear. Our results showed that high level of CDCA8 was significantly correlated with advanced WHO grade and poor overall survival and disease-free survival prognosis. In vitro and in vivo investigations demonstrated that CDCA8 promoted the glioma malignancy by promoting cell proliferation, cell migration, and inhibiting cell apoptosis. Moreover, we found its synergetic biological protein—E2F1 by the gene microarray chip. In this study, we revealed that CDCA8 synergized with E2F1 facilitated the proliferation and migration of glioma. In conclusion, our study provides a novel promising therapeutic targets and prognostic biomarkers for malignant glioma treatment.


2021 ◽  
Vol 22 (3) ◽  
pp. 1407
Author(s):  
Hongxia Liu ◽  
Wang Zheng ◽  
Qianping Chen ◽  
Yuchuan Zhou ◽  
Yan Pan ◽  
...  

Nasopharyngeal carcinoma (NPC) is one of the most frequent head and neck malignant tumors and is majorly treated by radiotherapy. However, radiation resistance remains a serious obstacle to the successful treatment of NPC. The aim of this study was to discover the underlying mechanism of radioresistance and to elucidate novel genes that may play important roles in the regulation of NPC radiosensitivity. By using RNA-seq analysis of NPC cell line CNE2 and its radioresistant cell line CNE2R, lncRNA CASC19 was screened out as a candidate radioresistance marker. Both in vitro and in vivo data demonstrated that a high expression level of CASC19 was positively correlated with the radioresistance of NPC, and the radiosensitivity of NPC cells was considerably enhanced by knockdown of CASC19. The incidence of autophagy was enhanced in CNE2R in comparison with CNE2 and another NPC cell line HONE1, and silencing autophagy with LC3 siRNA (siLC3) sensitized NPC cells to irradiation. Furthermore, CASC19 siRNA (siCASC19) suppressed cellular autophagy by inhibiting the AMPK/mTOR pathway and promoted apoptosis through the PARP1 pathway. Our results revealed for the first time that lncRNA CASC19 contributed to the radioresistance of NPC by regulating autophagy. In significance, CASC19 might be a potential molecular biomarker and a new therapeutic target in NPC.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Shourong Wang ◽  
Zixiang Wang ◽  
Jieyin Li ◽  
Junchao Qin ◽  
Jianping Song ◽  
...  

AbstractAberrant expression of splicing factors was found to promote tumorigenesis and the development of human malignant tumors. Nevertheless, the underlying mechanisms and functional relevance remain elusive. We here show that USP39, a component of the spliceosome, is frequently overexpressed in high-grade serous ovarian carcinoma (HGSOC) and that an elevated level of USP39 is associated with a poor prognosis. USP39 promotes proliferation/invasion in vitro and tumor growth in vivo. Importantly, USP39 was transcriptionally activated by the oncogene protein c-MYC in ovarian cancer cells. We further demonstrated that USP39 colocalizes with spliceosome components in nuclear speckles. Transcriptomic analysis revealed that USP39 deletion led to globally impaired splicing that is characterized by skipped exons and overrepresentation of introns and intergenic regions. Furthermore, RNA immunoprecipitation sequencing showed that USP39 preferentially binds to exon-intron regions near 5′ and 3′ splicing sites. In particular, USP39 facilitates efficient splicing of HMGA2 and thereby increases the malignancy of ovarian cancer cells. Taken together, our results indicate that USP39 functions as an oncogenic splicing factor in ovarian cancer and represents a potential target for ovarian cancer therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomoko Nakanishi ◽  
Aya Maekawa ◽  
Mariko Suzuki ◽  
Hirotaka Tabata ◽  
Kumiko Sato ◽  
...  

AbstractSimultaneous expression of multiplex guide RNAs (gRNAs) is valuable for knockout of multiple genes and also for effective disruption of a gene by introducing multiple deletions. We developed a method of Tetraplex-guide Tandem for construction of cosmids containing four and eight multiplex gRNA-expressing units in one step utilizing lambda in vitro packaging. Using this method, we produced an adenovirus vector (AdV) containing four multiplex-gRNA units for two double-nicking sets. Unexpectedly, the AdV could stably be amplified to the scale sufficient for animal experiments with no detectable lack of the multiplex units. When the AdV containing gRNAs targeting the H2-Aa gene and an AdV expressing Cas9 nickase were mixed and doubly infected to mouse embryonic fibroblast cells, deletions were observed in more than 80% of the target gene even using double-nicking strategy. Indels were also detected in about 20% of the target gene at two sites in newborn mouse liver cells by intravenous injection. Interestingly, when one double-nicking site was disrupted, the other was simultaneously disrupted, implying that two genes in the same cell may simultaneously be disrupted in the AdV system. The AdVs expressing four multiplex gRNAs could offer simultaneous knockout of four genes or two genes by double-nicking cleavages with low off-target effect.


1979 ◽  
Vol 177 (2) ◽  
pp. 559-567 ◽  
Author(s):  
C S Heng-Khoo ◽  
R B Rucker ◽  
K W Buckingham

Evidence is presented for the presence of precursor to tropoelastin in chick arterial extracts. The precursor is approx. 100 000 daltons in size. It is suggested to be a precursor to tropoelastin (72 000 daltons). This protein may be observed in culture in vitro if appropriate precautions are taken to inhibit proteolysis. Once synthesized, it appears to be converted into tropoelastin within 10–20 min. The protein may also be detected in vivo. When 1-day-old cockerels were fed on a copper-deficient diet (less than 1 p.p.m. to inhibit cross-linking) containing epsilon-aminohexanoic acid (0.2%) to retard proteolysis and then injected wiht [3H]valine, extraction of arterial proteins 12h after injection resulted in detection of two major peaks of [3H]valine-labelled protein with pI values of pH 7.0 and 5.0 respectively. The protein that focused at pH 7.0 was estimated to be about 100 000 daltons in size and could be shown to be converted into a more basic protein with the properties of tropoelastin. It is speculated that the protein with pI 5.0 may be yet another extension peptide. The data appear to be in keeping with similar observations by ourselves and others that a proform of tropoelastin exists, and, in at least one step before conversion into tropoelastin, exists as a 100 000-dalton protein subunit.


Sign in / Sign up

Export Citation Format

Share Document