Efficient Synthesis of Water-Soluble Magnetic Nanoparticles and Its Application in MRI in the Detection of Intracranial Aneurysm

2021 ◽  
Vol 13 (9) ◽  
pp. 1699-1707
Author(s):  
Boya Li ◽  
Aihua Xiong ◽  
Xiaotong Yang ◽  
Qiong Yang ◽  
Jing Liu

Magnetic nanoparticles were used in medical images, which could further improve image clarity, while watersoluble nanoparticles put forward more new requirements for the biocompatibility of nanoparticles. This research adopted a simple and novel method to prepare water-soluble iron oxide nanoparticles. First, transmission electron microscope (TEM) was used to analyze the size distribution of the prepared product; X-ray diffraction (XRD) was used to test the crystal structure of the prepared sample; the fast Fourier transform (FFT) spectrum was introduced to analyze the structural properties of the nanoparticles; the nanoparticle aqueous solutions of different concentrations were designed, and the impact of water-soluble nanoparticles on magnetic resonance imaging (MRI) was examined with the nuclear magnetic resonance spectrometer. At the same time, the prepared water-soluble nanoparticle solution was used for high-resolution tumor wall imaging of patients with unruptured intracranial aneurysm (IA) to compare the imaging effect of the aneurysm wall before and after the introduction of nanoparticles. In the material characterization test of nanoparticles, the prepared samples did not have certain iron oxide characteristic peaks, which means the synthesized iron oxide nanoparticles did not have a fixed crystal morphology. The samples tested by energy dispersive spectrometer (EDS) also contained Fe, O, C and Na. The average particle size was 5.8 nm. It was found under high-resolution TEM that the particle mirror spacing was 0.48 nm, which was consistent with the 111-crystal plane of Fe3O4; The magnetic hysteresis loop test confirmed that when the concentration of nanoparticles increased, the solution would form a magnetic fluid. When the concentration of aqueous solution of nanoparticles increased, the corresponding MRI signal would be significantly enhanced. It was used in the MR scan of patients with unruptured IA. Nanoparticle solution could increase the visibility of the aneurysm, and the image quality of the aneurysm wall could be significantly enhanced.

2020 ◽  
Vol 21 (5) ◽  
pp. 1613 ◽  
Author(s):  
Amlan Chakraborty ◽  
Simon Royce ◽  
Cordelia Selomulya ◽  
Magdalena Plebanski

Despite developments in pulmonary radiotherapy, radiation-induced lung toxicity remains a problem. More sensitive lung imaging able to increase the accuracy of diagnosis and radiotherapy may help reduce this problem. Super-paramagnetic iron oxide nanoparticles are used in imaging, but without further modification can cause unwanted toxicity and inflammation. Complex carbohydrate and polymer-based coatings have been used, but simpler compounds may provide additional benefits. Herein, we designed and generated super-paramagnetic iron oxide nanoparticles coated with the neutral natural dietary amino acid glycine (GSPIONs), to support non-invasive lung imaging and determined particle biodistribution, as well as understanding the impact of the interaction of these nanoparticles with lung immune cells. These GSPIONs were characterized to be crystalline, colloidally stable, with a size of 12 ± 5 nm and a hydrodynamic diameter of 84.19 ± 18 nm. Carbon, Hydrogen, Nitrogen (CHN) elemental analysis estimated approximately 20.2 × 103 glycine molecules present per nanoparticle. We demonstrated that it is possible to determine the biodistribution of the GSPIONs in the lung using three-dimensional (3D) ultra-short echo time magnetic resonance imaging. The GSPIONs were found to be taken up selectively by alveolar macrophages and neutrophils in the lung. In addition, the GSPIONs did not cause changes to airway resistance or induce inflammatory cytokines. Alveolar macrophages and neutrophils are critical regulators of pulmonary inflammatory diseases, including allergies, infections, asthma and chronic obstructive pulmonary disease (COPD). Therefore, pulmonary Magnetic Resonance (MR) imaging and preferential targeting of these lung resident cells by our nanoparticles offer precise imaging tools, which can be utilized to develop precision targeted radiotherapy as well as diagnostic tools for lung cancer, thereby having the potential to reduce the pulmonary complications of radiation.


Nanoscale ◽  
2021 ◽  
Author(s):  
Haiyang Jia ◽  
Jiawei Sun ◽  
Meng Dong ◽  
Hui Dong ◽  
Hongtao Zhang ◽  
...  

Magnetic iron oxide nanoparticles have been proven versatile applications in biomedicine. Although numerous strategies have been developed to synthsize hydrophilic magnetic nanoparticles, it is still a challenge in quantity and...


2018 ◽  
Vol 6 (6) ◽  
pp. 1280-1290 ◽  
Author(s):  
Y. Bao ◽  
J. A. Sherwood ◽  
Z. Sun

This review discusses several aspects regarding ultrasmall magnetic nanoparticles asT1contrast agents, including synthesis, parameters affectingT1, and applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
David Kovář ◽  
Aneta Malá ◽  
Jitka Mlčochová ◽  
Michal Kalina ◽  
Zdenka Fohlerová ◽  
...  

Magnetic nanoparticles produced using aqueous coprecipitation usually exhibit wide particle size distribution. Synthesis of small and uniform magnetic nanoparticles has been the subject of extensive research over recent years. Sufficiently small superparamagnetic iron oxide nanoparticles easily permeate tissues and may enhance the contrast in magnetic resonance imaging. Furthermore, their unique small size also allows them to migrate into cells and other body compartments. To better control their synthesis, a chemical coprecipitation protocol was carefully optimised regarding the influence of the injection rate of base and incubation times. The citrate-stabilised particles were produced with a narrow average size range below 2 nm and excellent stability. The stability of nanoparticles was monitored by long-term measurement of zeta potentials and relaxivity. Biocompatibility was tested on the Caki-2 cells with good tolerance. The application of nanoparticles for magnetic resonance imaging (MRI) was then evaluated. The relaxivities (r1,r2) and r2/r1 ratio calculated from MR images of prepared phantoms indicate the nanoparticles as a promising T2-contrast probe.


2017 ◽  
Vol 1 (11) ◽  
pp. 2335-2340 ◽  
Author(s):  
Nurul Izza Taib ◽  
Vipul Agarwal ◽  
Nicole M. Smith ◽  
Robert C. Woodward ◽  
Timothy G. St. Pierre ◽  
...  

Grafting of PNIPAM on PGMA coated magnetic nanoparticles can be used to study the PNIPAM phase transition in solution.


2018 ◽  
Vol 6 (10) ◽  
pp. 1470-1478 ◽  
Author(s):  
Y. B. Lv ◽  
P. Chandrasekharan ◽  
Y. Li ◽  
X. L. Liu ◽  
J. P. Avila ◽  
...  

Monodispersed 4 nm Gd-doped iron oxide nanoparticles (GdIONPs) were fabricated, and were as T1-weighted contrast agents to confirm the feasibility of non-invasively quantify and monitor IONPs in vivo based on MRI longitudinal relaxation times.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


2020 ◽  
Vol 10 (2) ◽  
pp. 166-174
Author(s):  
Mehdi Khoshneviszadeh ◽  
Sarah Zargarnezhad ◽  
Younes Ghasemi ◽  
Ahmad Gholami

Background: Magnetic cell immobilization has been introduced as a novel, facile and highly efficient approach for cell separation. A stable attachment between bacterial cell wall with superparamagnetic iron oxide nanoparticles (SPIONs) would enable the microorganisms to be affected by an outer magnetic field. At high concentrations, SPIONs produce reactive oxygen species in cytoplasm, which induce apoptosis or necrosis in microorganisms. Choosing a proper surface coating could cover the defects and increase the efficiency. Methods: In this study, asparagine, APTES, lipo-amino acid and PEG surface modified SPIONs was synthesized by co-precipitation method and characterized by FTIR, TEM, VSM, XRD, DLS techniques. Then, their protective effects against four Gram-positive and Gram-negative bacterial strains including Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were examined through microdilution broth and compared to naked SPION. Results: The evaluation of characterization results showed that functionalization of magnetic nanoparticles could change their MS value, size and surface charges. Also, the microbial analysis revealed that lipo-amino acid coated magnetic nanoparticles has the least adverse effect on microbial strain among tested SPIONs. Conclusion: This study showed lipo-amino acid could be considered as the most protective and even promotive surface coating, which is explained by its optimizing effect on cell penetration and negligible reductive effects on magnetic properties of SPIONs. lipo-amino acid coated magnetic nanoparticles could be used in microbial biotechnology and industrial microbiology.


Sign in / Sign up

Export Citation Format

Share Document