scholarly journals Landscape of innate immune system transcriptome and acute T cell–mediated rejection of human kidney allografts

JCI Insight ◽  
2019 ◽  
Vol 4 (13) ◽  
Author(s):  
Franco B. Mueller ◽  
Hua Yang ◽  
Michelle Lubetzky ◽  
Akanksha Verma ◽  
John R. Lee ◽  
...  
2009 ◽  
Vol 183 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Jonathan H. Esensten ◽  
Michael R. Lee ◽  
Laurie H. Glimcher ◽  
Jeffrey A. Bluestone

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 77-77
Author(s):  
Hong Xu ◽  
Jun Yan ◽  
Ziqiang Zhu ◽  
Yiming Huang ◽  
Yujie Wen ◽  
...  

Abstract Abstract 77 Adaptive immunity, especially T cells, has long been believed to be the dominant immune barrier in allogeneic transplantation. Targeting host T cells significantly reduces conditioning for bone marrow cell (BMC) engraftment. Innate immunity has been recently shown to pose a significant barrier in solid organ transplantation, but has not been addressed in bone marrow transplantation (BMT). Using T cell deficient (TCR-β/δ−/−) or T and B cell deficient (Rag−/−) mice, we found that allogeneic BMC rejection occurred early before the time required for T cell activation and was T- and B-cell independent, suggesting an effector role for innate immune cells in BMC rejection. Therefore, we hypothesized that by controlling both innate and adaptive immunity, the donor BMC would have a window of advantage to engraft. Survival of BMC in vivo was significantly improved by depleting recipient macrophages and/or NK cells, but not neutrophils. Moreover, depletion of macrophages and NK cells in combination with co-stimulatory blockade with anti-CD154 and rapamycin as a novel form of conditioning resulted in 100% allogeneic engraftment without any irradiation and T cell depletion. Donor chimerism remained stable and durable up to 6 months. Moreover, specific Vβ5½ and Vβ11 clonal deletion was detected in host CD4+ T cells in chimeras, indicating central tolerance to donor alloantigens. Whether and how the innate immune system recognizes or responds to allogeneic BMCs remains unknown. Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. The signaling function of TLR depends on intracellular adaptors. The adaptor MyD88 transmits signals emanating from all TLR, except TLR3 while TRIF specifically mediates TLR3 and TLR4 signaling via type 1 IFN. To further determine the innate signaling pathways in allogeneic BMC rejection, B6 background (H2b) MyD88−/− and TRIF−/− mice were conditioned with anti-CD154/rapamycin plus 100 cGy total body irradiation and transplanted with 15 × 106 BALB/c (H2d) BMC. Only 33.3% of MyD88−/− recipients engrafted at 1 month, resembling outcomes for wild-type B6 mice. In contrast, 100% of TRIF−/− mice engrafted. The level of donor chimerism in TRIF−/− mice was 5.1 ± 0.6% at one month, significantly higher than in MyD88−/− and wild-type B6 controls (P < 0.005). To determine the mechanism of innate signaling in BMC rejection, we examined whether TRIF linked TLR3 or TLR4 is the key pattern recognition receptor involved in BMC recognition. To this end, TLR3−/− and TLR4−/− mice were transplanted with BALB/c BMC with same conditioning. None of the TLR3−/− mice engrafted. In contrast, engraftment was achieved in 100% of TLR4−/− mice up to 6 months follow up. Taken together, these results suggest that rejection of allogeneic BMC is uniquely dependent on the TLR4/TRIF signaling pathway. Thus, our results clearly demonstrate a previously unappreciated role for innate immunity in allogeneic BMC rejection. Our current findings are distinct from prior reports demonstrating a critical role of MyD88 in rejection of allogeneic skin grafts and lung, and may reflect unique features related to BMC. The findings of the role of innate immunity in BMC rejection would lead to revolutionary changes in our understanding and management of BMT. This would be informative in design of more specific innate immune targeted conditioning proposals in BMT to avoid the toxicity. Disclosures: Bozulic: Regenerex LLC: Employment. Ildstad:Regenerex LLC: Equity Ownership.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Danielle Minns ◽  
Katie Jane Smith ◽  
Emily Gwyer Findlay

Neutrophils are the most abundant leukocytes in peripheral blood and respond rapidly to danger, infiltrating tissues within minutes of infectious or sterile injury. Neutrophils were long thought of as simple killers, but now we recognise them as responsive cells able to adapt to inflammation and orchestrate subsequent events with some sophistication. Here, we discuss how these rapid responders release mediators which influence later adaptive T cell immunity through influences on DC priming and directly on the T cells themselves. We consider how the release of granule contents by neutrophils—through NETosis or degranulation—is one way in which the innate immune system directs the phenotype of the adaptive immune response.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3523-3523
Author(s):  
Hong Xu ◽  
Jun Yan ◽  
Ziqiang Zhu ◽  
Lala-Rukh Hussain ◽  
Yiming Huang ◽  
...  

Abstract Abstract 3523 Poster Board III-460 Adaptive immunity, especially T cells, has long been believed to be the dominant immune response in allogeneic transplantation. However, innate immunity has been recently shown to pose a significant barrier to the induction of tolerance to solid organ transplants. The role of the innate immune system in bone marrow cell alloreactivity has not been addressed. The innate immune system provides the first line of defense in the removal of pathogens because of the delay in generation of adaptive immune responses. Our present findings show that innate immunity is a significant first line barrier in bone marrow cell (BMC) rejection. To determine the effect of innate immune cell populations on rejection of donor BMCs, T cell deficient mice (TCR β/δ−/−) were used as BMC recipients in in vivo cytotoxicity assays (Figure A). TCRβ/δ−/− mice have normal innate immune cell populations but do not initiate adaptive cell-mediated cytotoxic or humoral responses. 20 × 106 CFSE labeled donor (high CFSE fluorescence intensity) and recipient control splenocytes (low CFSE fluorescence intensity) were injected into TCRβ/δ−/− and wildtype control B6 recipient mice. Donor cell survival was compared over time. Donor BALB/c splenocytes were eliminated in wildtype B6, with rejection complete by day 3. The kinetics of elimination of donor cells in TCRβ/δ−/− mice was similar to that for wildtype B6 controls, with donor cells eliminated by day 3. These results indicate that early rejection of the splenocytes in wildtype mice was T cell-independent. The acute rejection of BMC in wildtype B6 recipients occurred within 3 days, which is prior to the time required for T cell activation. Thus the effectors mediating BMC rejection would be the innate immune cells: macrophages, neutrophils, or NK cells. To rule out potential involvement of natural Abs in the cytotoxicity we observed in the TCRβ/δ−/− mice, Rag−/− mice were used as recipients (Figure B). Rag−/− mice do not produce mature T cells or B cells. 20 × 106 CFSE labeled donor (high CFSE intensity) and recipient control BM cells (low CFSE intensity) were injected into Rag−/−mice. Rag−/− and wildtype B6 control mice exhibited similar kinetics of donor cell cytolysis. The rapid elimination of allogeneic cells from immunocompetent mice is comparable with that observed in T cell- (TCRβ/δ−/−) or T and B cell- (Rag−/−) deficient mice indicates that allogeneic cells are subject to T cell-independent rejection at the early time period after cell infusion (≤ 3 days). As the kinetics of cytotoxicity were similar in experiments using either splenocytes or BMCs as target cells in our later experiments, our data suggest that the innate immune system is responsible for early allorejection of donor BMC at the early inductive period for adaptive immunity. These findings may have significant impact on the development of immune-based nonmyeloablative conditioning strategies and show for the first time that a dominant factor in BMC rejection is contributed by innate immune responses. Disclosures: Bozulic: Regenerex: Employment. Ildstad:Regenerex: Equity Ownership.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
Takashi Watanabe

A dominant paradigm being developed in immunotherapy for hematologic malignancies is of adaptive immunotherapy that involves chimeric antigen receptor (CAR) T cells and bispecific T-cell engagers. CAR T-cell therapy has yielded results that surpass those of the existing salvage immunochemotherapy for patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) after first-line immunochemotherapy, while offering a therapeutic option for patients with follicular lymphoma (FL) and mantle cell lymphoma (MCL). However, the role of the innate immune system has been shown to prolong CAR T-cell persistence. Cluster of differentiation (CD) 47-blocking antibodies, which are a promising therapeutic armamentarium for DLBCL, are novel innate immune checkpoint inhibitors that allow macrophages to phagocytose tumor cells. Intratumoral Toll-like receptor 9 agonist CpG oligodeoxynucleotide plays a pivotal role in FL, and vaccination may be required in MCL. Additionally, local stimulator of interferon gene agonists, which induce a systemic anti-lymphoma CD8+ T-cell response, and the costimulatory molecule 4-1BB/CD137 or OX40/CD134 agonistic antibodies represent attractive agents for dendritic cell activations, which subsequently, facilitates initiation of productive T-cell priming and NK cells. This review describes the exploitation of approaches that trigger innate immune activation for adaptive immune cells to operate maximally in the tumor microenvironment of these lymphomas.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A235-A235
Author(s):  
Osiris Marroquin Belaunzaran ◽  
Anahita Rafiei ◽  
Anil Kumar ◽  
Julia Kolibaba ◽  
Lorenz Vogt ◽  
...  

BackgroundThe human leukocyte immunoglobulin-like receptor family B (LILR B) acts as check point blockade of the innate immune system by inhibiting leukocyte activation through SHP phosphatase recruitment. Some of the physiological ligands include classical HLA class I molecules, including beta-2-microglobulin (B2M) free open conformers (OC). Natural HLA-OC expression is known from autoimmune disease leading to immune activation by pleiotropic effects since they bind to LILRB and KIR family members reducing Treg and MDSC numbers and increased effector T-cell and NK-cell activation, respectively. We have generated an IgG4-HLA-57 open conformer (OC) molecule (iosH2) with high affinity for LILRB molecules and demonstrate its anti-cancer activity in vitro and in vivo.Methods iosH2 was produced by transient gene expression in CHO cells and purified by standard chromatography. Affinity of iosH2 binding was quantified by ELISA and SPR analysis. HLA-G mediated signaling and competition was assessed using functional cell lines. Effect of iosH2 on activation of SHP1/2 was assessed using Western Blot. Functional assays including in vitro polarization and phagocytosis potential of primary macrophages was assessed by flow cytometry in the presence of iosH2 or isotype control. Effect of iosH2 on T cell activation was evaluated in co-cultures of cancer and T cells. Mouse models were used to assess in vivo activity.Results iosH2 binds to LILRB2 with high affinity and blocks the activation of HLA-G. In addition, iosH2 blocks receptor-mediated activation of SHP1/2. iosH2 promotes a shift from M2 to M1 macrophages with enhanced tumor cell phagocytosis in vitro. iosH2 enhances activation and killing potential of T cells in cancer cells and T cells co-culture assay. iosH2 exerts therapeutic efficacy in mouse transgenic (melanoma) and different syngeneic tumor models (e.g. pancreatic, colon and breast cancer) as monotherapy. Moreover, it acts synergistically in vivo with PD1 blocking antibodies achieving long-term tumor control. Ex vivo tumor sample analysis demonstrates a significant reduction of MDSC and Tregs and a shift towards an activated inflammatory M1 macrophage phenotype. Loss of MDSC functionality was paralleled by enhanced CD8+ T cell expansion and activity.Conclusions iosH2 binds to LILRB2 with high affinity, restores immune cell function in vitro and demonstrates anti-tumor activity in different in vivo mouse models. In addition, it acts synergistically in vivo with PD1. iosH2 is a first-in-class OC therapeutic with robust anti-tumor activity by promoting key components of the innate immune system. Clinical development is under way and phase I trial in preparation.


2020 ◽  
Vol 4 (2) ◽  
pp. 207-227
Author(s):  
David A. Clark

Human pregnancy, critical for our species survival, is inefficient and prone to complications such as infertility, spontaneous miscarriages and preeclampsia (PE). Immunological factors may be important as the embryo is 50% paternal and foreign to the mother. Mouse pregnancy models, and in particular the murine CBA/J x DBA/2 mating combination, has been widely used to investigate mechanisms causing and preventing partner-specific recurrent miscarriages (RM) and PE. Occult losses can represent T cell-mediated rejection, and antigen-specific regulatory T cells (Tregs) with classical αβ T cell receptors (TcR) activated by semen antigens at the time of mating are protective. If there is no occult loss, an inadequate Treg response can also predispose to RM. In RM, proinflammatory cytokines from natural killer (NK)-type cells and macrophages of the innate immune system are responsible and cells with γδ TcR protect via release of TGF-β-type molecules. Immunization of abortion-prone female CBA/J mice or administration of cell-associated or soluble CD200, an immune check point inhibitor, can prevent abortions by augmenting uterine decidual suppressor cell activity. Human studies suggest that is also true in couples with RM. Environmental activators of the innate immune system, such as bacterial LPS and stress, can cause abortions as well as occult losses. The endogenous level of Tregs and activation of Tregs specific for the male H-Y antigen may determine success rates and alter the male:female birth ratio. Intralipid alters LPS clearance, prevents abortions in the CBAxDBA/2 model, and is effective in increasing live birth rates in couples undergoing IVF treatment.


Sign in / Sign up

Export Citation Format

Share Document