scholarly journals Estimation of Surface Currents in the Adriatic Sea from Sequential Infrared Satellite Images

2008 ◽  
Vol 25 (2) ◽  
pp. 271-285 ◽  
Author(s):  
Giulio Notarstefano ◽  
Pierre-Marie Poulain ◽  
Elena Mauri

Abstract The maximum cross-correlation (MCC) technique is utilized to estimate the Adriatic Sea surface currents in regions characterized by strong horizontal temperature gradients using sequential pairs of sea surface temperature images from the Advanced Very High Resolution Radiometer data collected between September 2002 and December 2003. A variety of filtering techniques are used to eliminate erroneous MCC-derived currents resulting in velocity and direction estimates that are spatially coherent in most of the thermal features observed. The results are compared quantitatively to the currents measured by surface drifters and high-frequency coastal radars, operating simultaneously in the vicinity of the thermal structures considered. These comparisons show that surface MCC-derived velocities agree with the typical circulation pattern generally observed in the Adriatic basin. The MCC velocity estimates agree well with collocated and cotemporal drifter and radar measurements averaged on the time interval separating the pairs of images. Since the MCC method provides only estimates of surface currents when thermal features exist and are not covered by clouds, it is proposed that this technique be used preferably with other measurements of surface circulation (high-frequency coastal radars, drifters, etc.) to construct more accurate, more frequent, and more extended circulation maps for scientific and operational purposes in marginal seas such as the Adriatic.

2021 ◽  
Author(s):  
Jaime Hernandez Lasheras ◽  
Baptiste Mourre ◽  
Alejandro Orfila ◽  
Alex Santana ◽  
Emma Reyes ◽  
...  

<p>High Frequency Radars (HFR) are a mature remote sensing technology which is widely used in ocean observing systems to monitor surface currents in coastal areas.  HFR systems are composed of 2 or more antennas which measure water motion speed along certain bearings, providing radial observations, which are later on postprocessed and mapped to generate orthogonal currents observations (u, v), herein named Totals.</p><p>Both Radial and Total observations have been used to correct surface currents through data assimilation in numerous works in the past years, but, in our opinion, there is a lack of studies comparing the performance of both types of data. Here we present a series of experiments evaluating the capabilities of HFR to correct surface currents in the Ibiza Channel using data assimilation. We put special interest in assessing the potentialities of whether using radial or total observations and also their capabilities in a real operational context.</p><p>A Lagrangian assessment using a set of 14 surface drifters deployed in the area allows to evaluate the performance of both kinds of observations, showing how the separation distance between drifting buoys and virtual particles is reduced in both cases.</p>


Ocean Science ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 161-178 ◽  
Author(s):  
A. Barth ◽  
A. Alvera-Azcárate ◽  
K.-W. Gurgel ◽  
J. Staneva ◽  
A. Port ◽  
...  

Abstract. High-Frequency (HF) radars measure the ocean surface currents at various spatial and temporal scales. These include tidal currents, wind-driven circulation, density-driven circulation and Stokes drift. Sequential assimilation methods updating the model state have been proven successful to correct the density-driven currents by assimilation of observations such as sea surface height, sea surface temperature and in-situ profiles. However, the situation is different for tides in coastal models since these are not generated within the domain, but are rather propagated inside the domain through the boundary conditions. For improving the modeled tidal variability it is therefore not sufficient to update the model state via data assimilation without updating the boundary conditions. The optimization of boundary conditions to match observations inside the domain is traditionally achieved through variational assimilation methods. In this work we present an ensemble smoother to improve the tidal boundary values so that the model represents more closely the observed currents. To create an ensemble of dynamically realistic boundary conditions, a cost function is formulated which is directly related to the probability of each boundary condition perturbation. This cost function ensures that the boundary condition perturbations are spatially smooth and that the structure of the perturbations satisfies approximately the harmonic linearized shallow water equations. Based on those perturbations an ensemble simulation is carried out using the full three-dimensional General Estuarine Ocean Model (GETM). Optimized boundary values are obtained by assimilating all observations using the covariances of the ensemble simulation.


2021 ◽  
Vol 13 (17) ◽  
pp. 3438
Author(s):  
Yu-Ru Chen ◽  
Jeffrey D. Paduan ◽  
Michael S. Cook ◽  
Laurence Zsu-Hsin Chuang ◽  
Yu-Jen Chung

A network of high-frequency radars (HFRs) has been deployed around Taiwan. The wide-area data coverage is dedicated to revealing near real-time sea-surface current information. This paper investigates three primary objectives: (1) describing the seasonal current synoptic variability; (2) determining the influence of wind forcing; (3) describing the tidal current field pattern and variability. Sea surface currents derived from HFR data include both geostrophic components and wind-driven components. This study explored vector complex correlations between the HFR time series and wind, which was sufficient to identify high-frequency components, including an Ekman balance among the surface currents and wind. Regarding the characteristics of mesoscale events and the tidal field, a year-long high-resolution surface dataset was utilized to observe the current–eddy–tide interactions over four seasons. The harmonic analysis results derived from surface currents off of northeastern Taiwan during 2013 are presented. The results agree well with the tidal parameters estimated from tide-gauge station observations. The analysis shows that this region features a strong, mixed, mainly semidiurnal tide. Continued monitoring by a variety of sensors (e.g., satellite and HFR) would improve the understanding of the circulation in the region.


Author(s):  
V.A. Bulanov ◽  
I.V. Korskov ◽  
A.V. Storozhenko ◽  
S.N. Sosedko

Описано применение акустического зондирования для исследования акустических характеристик верхнего слоя моря с использованием широкополосных остронаправленных инвертированных излучателей,устанавливаемых на дно. В основу метода положен принцип регистрации обратного рассеяния и отраженияот поверхности моря акустических импульсов с различной частотой, позволяющий одновременно измерятьрассеяние и поглощение звука и нелинейный акустический параметр морской воды. Многочастотное зондирование позволяет реализовать акустическую спектроскопию пузырьков в приповерхностных слоях моря,проводить оценку газосодержания и получать данные о спектре поверхностного волнения при различных состояниях моря вплоть до штормовых. Применение остронаправленных высокочастотных пучков ультразвукапозволяет разделить информацию о планктоне и пузырьках и определить с высоким пространственным разрешением структуру пузырьковых облаков, образующихся при обрушении ветровых волн, и структуру планктонных сообществ. Участие планктона в волновом движении в толще морской воды позволяет определитьпараметры внутренних волн спектр и распределение по амплитудам в различное время.This paper represents the application of acoustic probingfor the investigation of acoustical properties of the upperlayer of the sea using broadband narrow-beam invertedtransducers that are mounted on the sea bottom. Thismethod is based on the principle of the recording of thebackscattering and reflections of acoustic pulses of differentfrequencies from the sea surface. That simultaneouslyallows measuring scattering and absorption of the soundand non-linear acoustic parameter of seawater. Multifrequencyprobing allows performing acoustic spectroscopy ofbubbles in the near-surface layer of the sea, estimating gascontent, and obtaining data on the spectrum of the surfacewaves in various states of the sea up to a storm. Utilizationof the high-frequency narrow ultrasound beams allows us toseparate the information about plankton and bubbles and todetermine the structure of bubble clouds, created during thebreaking of wind waves, along with the structure of planktoncommunities with high spatial resolution. The participationof plankton in the wave motion in the seawater columnallows determining parameters of internal waves, such asspectrum and distribution of amplitudes at different times.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Steven D. Miller ◽  
Steven H. D. Haddock ◽  
William C. Straka ◽  
Curtis J. Seaman ◽  
Cynthia L. Combs ◽  
...  

AbstractMilky seas are a rare form of marine bioluminescence where the nocturnal ocean surface produces a widespread, uniform and steady whitish glow. Mariners have compared their appearance to a daylit snowfield that extends to all horizons. Encountered most often in remote waters of the northwest Indian Ocean and the Maritime Continent, milky seas have eluded rigorous scientific inquiry, and thus little is known about their composition, formation mechanism, and role within the marine ecosystem. The Day/Night Band (DNB), a new-generation spaceborne low-light imager, holds potential to detect milky seas, but the capability has yet to be demonstrated. Here, we show initial examples of DNB-detected milky seas based on a multi-year (2012–2021) search. The massive bodies of glowing ocean, sometimes exceeding 100,000 km2 in size, persist for days to weeks, drift within doldrums amidst the prevailing sea surface currents, and align with narrow ranges of sea surface temperature and biomass in a way that suggests water mass isolation. These findings show how spaceborne assets can now help guide research vessels toward active milky seas to learn more about them.


2021 ◽  
Vol 7 (20) ◽  
pp. eabf1552
Author(s):  
Olivia M. Cheriton ◽  
Curt D. Storlazzi ◽  
Kurt J. Rosenberger ◽  
Clark E. Sherman ◽  
Wilford E. Schmidt

Hurricanes are extreme storms that affect coastal communities, but the linkages between hurricane forcing and ocean dynamics remain poorly understood. Here, we present full water column observations at unprecedented resolution from the southwest Puerto Rico insular shelf and slope during Hurricane María, representing a rare set of high-frequency, subsurface, oceanographic observations collected along an island margin during a hurricane. The shelf geometry and orientation relative to the storm acted to stabilize and strengthen stratification. This maintained elevated sea-surface temperatures (SSTs) throughout the storm and led to an estimated 65% greater potential hurricane intensity contribution at this site before eye passage. Coastal cooling did not occur until 11 hours after the eye passage. Our findings present a new framework for how hurricane interaction with insular island margins may generate baroclinic processes that maintain elevated SSTs, thus potentially providing increased energy for the storm.


2021 ◽  
Vol 13 (2) ◽  
pp. 259
Author(s):  
Shuping Zhang ◽  
Anna Rutgersson ◽  
Petra Philipson ◽  
Marcus B. Wallin

Marginal seas are a dynamic and still to large extent uncertain component of the global carbon cycle. The large temporal and spatial variations of sea-surface partial pressure of carbon dioxide (pCO2) in these areas are driven by multiple complex mechanisms. In this study, we analyzed the variable importance for the sea surface pCO2 estimation in the Baltic Sea and derived monthly pCO2 maps for the marginal sea during the period of July 2002–October 2011. We used variables obtained from remote sensing images and numerical models. The random forest algorithm was employed to construct regression models for pCO2 estimation and produce the importance of different input variables. The study found that photosynthetically available radiation (PAR) was the most important variable for the pCO2 estimation across the entire Baltic Sea, followed by sea surface temperature (SST), absorption of colored dissolved organic matter (aCDOM), and mixed layer depth (MLD). Interestingly, Chlorophyll-a concentration (Chl-a) and the diffuse attenuation coefficient for downwelling irradiance at 490 nm (Kd_490nm) showed relatively low importance for the pCO2 estimation. This was mainly attributed to the high correlation of Chl-a and Kd_490nm to other pCO2-relevant variables (e.g., aCDOM), particularly in the summer months. In addition, the variables’ importance for pCO2 estimation varied between seasons and sub-basins. For example, the importance of aCDOM were large in the Gulf of Finland but marginal in other sub-basins. The model for pCO2 estimate in the entire Baltic Sea explained 63% of the variation and had a root of mean squared error (RMSE) of 47.8 µatm. The pCO2 maps derived with this model displayed realistic seasonal variations and spatial features of sea surface pCO2 in the Baltic Sea. The spatially and seasonally varying variables’ importance for the pCO2 estimation shed light on the heterogeneities in the biogeochemical and physical processes driving the carbon cycling in the Baltic Sea and can serve as an important basis for future pCO2 estimation in marginal seas using remote sensing techniques. The pCO2 maps derived in this study provided a robust benchmark for understanding the spatiotemporal patterns of CO2 air-sea exchange in the Baltic Sea.


Sign in / Sign up

Export Citation Format

Share Document