scholarly journals Moist Convection and the Thermal Stratification of the Extratropical Troposphere

2008 ◽  
Vol 65 (11) ◽  
pp. 3571-3583 ◽  
Author(s):  
Tapio Schneider ◽  
Paul A. O’Gorman

Abstract Simulations with an aquaplanet general circulation model show that sensible and latent heat transport by large-scale eddies influences the extratropical thermal stratification over a wide range of climates, even in relatively warm climates with small meridional surface temperature gradients. Variations of the lapse rate toward which the parameterized moist convection in the model relaxes atmospheric temperature profiles demonstrate that the convective lapse rate only marginally affects the extratropical thermal stratification in Earth-like and colder climates. In warmer climates, the convective lapse rate does affect the extratropical thermal stratification, but the effect is still smaller than would be expected if moist convection alone controlled the thermal stratification. A theory for how large-scale eddies modify the thermal stratification of dry atmospheres is consistent with the simulation results for colder climates. For warmer and moister climates, however, theories and heuristics that have been proposed to account for the extratropical thermal stratification are not consistent with the simulation results. Theories for the extratropical thermal stratification will generally have to take transport of sensible and latent heat by large-scale eddies into account, but moist convection may only need to be taken into account regionally and in sufficiently warm climates.

2006 ◽  
Vol 63 (10) ◽  
pp. 2548-2566 ◽  
Author(s):  
Dargan M. W. Frierson ◽  
Isaac M. Held ◽  
Pablo Zurita-Gotor

Abstract In this paper, a simplified moist general circulation model is developed and used to study changes in the atmospheric general circulation as the water vapor content of the atmosphere is altered. The key elements of the model physics are gray radiative transfer, in which water vapor and other constituents have no effect on radiative fluxes, a simple diffusive boundary layer with prognostic depth, and a mixed layer aquaplanet surface boundary condition. This GCM can be integrated stably without a convection parameterization, with large-scale condensation only, and this study focuses on this simplest version of the model. These simplifications provide a useful framework in which to focus on the interplay between latent heat release and large-scale dynamics. In this paper, the authors study the role of moisture in determining the tropospheric static stability and midlatitude eddy scale. In a companion paper, the effects of moisture on energy transports by baroclinic eddies are discussed. The authors vary a parameter in the Clausius–Clapeyron relation to control the amount of water in the atmosphere, and consider circulations ranging from the dry limit to 10 times a control value. The typical length scale of midlatitude eddies is found to be remarkably insensitive to the amount of moisture in the atmosphere in this model. The Rhines scale evaluated at the latitude of the maximum eddy kinetic energy fits the model results for the eddy scale well. Moist convection is important in determining the extratropical lapse rate, and the dry stability is significantly increased with increased moisture content.


2007 ◽  
Vol 20 (5) ◽  
pp. 908-925 ◽  
Author(s):  
Eric D. Maloney ◽  
Adam H. Sobel

Abstract Idealized experiments are conducted using a GCM coupled to a 20-m slab ocean model to examine the short-term response to an initial localized positive equatorial SST anomaly, or “hot spot.” A hot spot is imposed upon an aquaplanet with globally uniform 28°C SST, insolation, and trace gas concentrations designed to mimic tropical warm pool conditions. No boundary condition or external parameter other than the Coriolis parameter varies with latitude. A 15-member ensemble is initiated using random atmospheric initial conditions. A 2°C equatorial warm anomaly is switched on, along with ocean coupling (day 0). Enhanced deep convection rapidly develops near the hot spot, forcing an anomalous large-scale circulation that resembles the linear response of a dry atmosphere to a localized heating, as in the Gill model. Enhanced convection, the anomalous large-scale circulation, and enhanced wind speed peak in amplitude at about day 15. Enhanced latent heat fluxes driven primarily by an increase in vector mean wind damp the anomalous heat content of the ocean near the hot spot before day 20. Between day 20 and day 50, suppressed latent heat fluxes due to suppressed synoptic eddy variance cause a warming of the remote Tropics in regions of anomalous low-level easterly flow. This wind-driven evaporative atmosphere–ocean exchange results in a 60–70-day oscillation in tropical mean oceanic heat content, accompanied by a compensating out-of-phase oscillation in vertically integrated atmospheric moist static energy. Beyond day 70 of the simulation, positive SST anomalies are found across much of the tropical belt. These slowly decay toward the 28°C background state.


1998 ◽  
Vol 11 (8) ◽  
pp. 1997-2015 ◽  
Author(s):  
Bing Ye ◽  
Anthony D. Del Genio ◽  
Kenneth K-W. Lo

Abstract Observed variations of convective available potential energy (CAPE) in the current climate provide one useful test of the performance of cumulus parameterizations used in general circulation models (GCMs). It is found that frequency distributions of tropical Pacific CAPE, as well as the dependence of CAPE on surface wet-bulb potential temperature (Θw) simulated by the Goddard Institute for Space Studies’s GCM, agree well with that observed during the Australian Monsoon Experiment period. CAPE variability in the current climate greatly overestimates climatic changes in basinwide CAPE in the tropical Pacific in response to a 2°C increase in sea surface temperature (SST) in the GCM because of the different physics involved. In the current climate, CAPE variations in space and time are dominated by regional changes in boundary layer temperature and moisture, which in turn are controlled by SST patterns and large-scale motions. Geographical thermodynamic structure variations in the middle and upper troposphere are smaller because of the canceling effects of adiabatic cooling and subsidence warming in the rising and sinking branches of the Walker and Hadley circulations. In a forced equilibrium global climate change, temperature change is fairly well constrained by the change in the moist adiabatic lapse rate and thus the upper troposphere warms to a greater extent than the surface. For this reason, climate change in CAPE is better predicted by assuming that relative humidity remains constant and that the temperature changes according to the moist adiabatic lapse rate change of a parcel with 80% relative humidity lifted from the surface. The moist adiabatic assumption is not symmetrically applicable to a warmer and colder climate: In a warmer regime moist convection determines the tropical temperature structure, but when the climate becomes colder the effect of moist convection diminishes and the large-scale dynamics and radiative processes become relatively important. Although a prediction based on the change in moist adiabat matches the GCM simulation of climate change averaged over the tropical Pacific basin, it does not match the simulation regionally because small changes in the general circulation change the local boundary layer relative humidity by 1%–2%. Thus, the prediction of regional climate change in CAPE is also dependent on subtle changes in the dynamics.


2013 ◽  
Vol 26 (12) ◽  
pp. 4000-4016 ◽  
Author(s):  
Michael P. Byrne ◽  
Paul A. O’Gorman

Abstract Surface temperatures increase at a greater rate over land than ocean in simulations and observations of global warming. It has previously been proposed that this land–ocean warming contrast is related to different changes in lapse rates over land and ocean because of limited moisture availability over land. A simple theory of the land–ocean warming contrast is developed here in which lapse rates are determined by an assumption of convective quasi-equilibrium. The theory predicts that the difference between land and ocean temperatures increases monotonically as the climate warms or as the land becomes more arid. However, the ratio of differential warming over land and ocean varies nonmonotonically with temperature for constant relative humidities and reaches a maximum at roughly 290 K. The theory is applied to simulations with an idealized general circulation model in which the continental configuration and climate are varied systematically. The simulated warming contrast is confined to latitudes below 50° when climate is varied by changes in longwave optical thickness. The warming contrast depends on land aridity and is larger for zonal land bands than for continents with finite zonal extent. A land–ocean temperature contrast may be induced at higher latitudes by enforcing an arid land surface, but its magnitude is relatively small. The warming contrast is generally well described by the theory, although inclusion of a land–ocean albedo contrast causes the theory to overestimate the land temperatures. Extensions of the theory are discussed to include the effect of large-scale eddies on the extratropical thermal stratification and to account for warming contrasts in both surface air and surface skin temperatures.


2021 ◽  
Vol 11 (8) ◽  
pp. 3623
Author(s):  
Omar Said ◽  
Amr Tolba

Employment of the Internet of Things (IoT) technology in the healthcare field can contribute to recruiting heterogeneous medical devices and creating smart cooperation between them. This cooperation leads to an increase in the efficiency of the entire medical system, thus accelerating the diagnosis and curing of patients, in general, and rescuing critical cases in particular. In this paper, a large-scale IoT-enabled healthcare architecture is proposed. To achieve a wide range of communication between healthcare devices, not only are Internet coverage tools utilized but also satellites and high-altitude platforms (HAPs). In addition, the clustering idea is applied in the proposed architecture to facilitate its management. Moreover, healthcare data are prioritized into several levels of importance. Finally, NS3 is used to measure the performance of the proposed IoT-enabled healthcare architecture. The performance metrics are delay, energy consumption, packet loss, coverage tool usage, throughput, percentage of served users, and percentage of each exchanged data type. The simulation results demonstrate that the proposed IoT-enabled healthcare architecture outperforms the traditional healthcare architecture.


Ocean Science ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 143-159 ◽  
Author(s):  
S. Cailleau ◽  
J. Chanut ◽  
J.-M. Lellouche ◽  
B. Levier ◽  
C. Maraldi ◽  
...  

Abstract. The regional ocean operational system remains a key element in downscaling from large scale (global or basin scale) systems to coastal ones. It enables the transition between systems in which the resolution and the resolved physics are quite different. Indeed, coastal applications need a system to predict local high frequency events (inferior to the day) such as storm surges, while deep sea applications need a system to predict large scale lower frequency ocean features. In the framework of the ECOOP project, a regional system for the Iberia-Biscay-Ireland area has been upgraded from an existing V0 version to a V2. This paper focuses on the improvements from the V1 system, for which the physics are close to a large scale basin system, to the V2 for which the physics are more adapted to shelf and coastal issues. Strong developments such as higher regional physics resolution in the NEMO Ocean General Circulation Model for tides, non linear free surface and adapted vertical mixing schemes among others have been implemented in the V2 version. Thus, regional thermal fronts due to tidal mixing now appear in the latest version solution and are quite well positioned. Moreover, simulation of the stratification in shelf areas is also improved in the V2.


2007 ◽  
Vol 4 (5) ◽  
pp. 3413-3440 ◽  
Author(s):  
E. P. Maurer ◽  
H. G. Hidalgo

Abstract. Downscaling of climate model data is essential to most impact analysis. We compare two methods of statistical downscaling to produce continuous, gridded time series of precipitation and surface air temperature at a 1/8-degree (approximately 140 km² per grid cell) resolution over the western U.S. We use NCEP/NCAR Reanalysis data from 1950–1999 as a surrogate General Circulation Model (GCM). The two methods included are constructed analogues (CA) and a bias correction and spatial downscaling (BCSD), both of which have been shown to be skillful in different settings, and BCSD has been used extensively in hydrologic impact analysis. Both methods use the coarse scale Reanalysis fields of precipitation and temperature as predictors of the corresponding fine scale fields. CA downscales daily large-scale data directly and BCSD downscales monthly data, with a random resampling technique to generate daily values. The methods produce comparable skill in producing downscaled, gridded fields of precipitation and temperatures at a monthly and seasonal level. For daily precipitation, both methods exhibit some skill in reproducing both observed wet and dry extremes and the difference between the methods is not significant, reflecting the general low skill in daily precipitation variability in the reanalysis data. For low temperature extremes, the CA method produces greater downscaling skill than BCSD for fall and winter seasons. For high temperature extremes, CA demonstrates higher skill than BCSD in summer. We find that the choice of most appropriate downscaling technique depends on the variables, seasons, and regions of interest, on the availability of daily data, and whether the day to day correspondence of weather from the GCM needs to be reproduced for some applications. The ability to produce skillful downscaled daily data depends primarily on the ability of the climate model to show daily skill.


2006 ◽  
Vol 24 (8) ◽  
pp. 2075-2089 ◽  
Author(s):  
A. Chakraborty ◽  
R. S. Nanjundiah ◽  
J. Srinivasan

Abstract. A theory is proposed to determine the onset of the Indian Summer Monsoon (ISM) in an Atmospheric General Circulation Model (AGCM). The onset of ISM is delayed substantially in the absence of global orography. The impact of orography over different parts of the Earth on the onset of ISM has also been investigated using five additional perturbed simulations. The large difference in the date of onset of ISM in these simulations has been explained by a new theory based on the Surface Moist Static Energy (SMSE) and vertical velocity at the mid-troposphere. It is found that onset occurs only after SMSE crosses a threshold value and the large-scale vertical motion in the middle troposphere becomes upward. This study shows that both dynamics and thermodynamics play profound roles in the onset of the monsoon.


Sign in / Sign up

Export Citation Format

Share Document