Idealized Hot Spot Experiments with a General Circulation Model

2007 ◽  
Vol 20 (5) ◽  
pp. 908-925 ◽  
Author(s):  
Eric D. Maloney ◽  
Adam H. Sobel

Abstract Idealized experiments are conducted using a GCM coupled to a 20-m slab ocean model to examine the short-term response to an initial localized positive equatorial SST anomaly, or “hot spot.” A hot spot is imposed upon an aquaplanet with globally uniform 28°C SST, insolation, and trace gas concentrations designed to mimic tropical warm pool conditions. No boundary condition or external parameter other than the Coriolis parameter varies with latitude. A 15-member ensemble is initiated using random atmospheric initial conditions. A 2°C equatorial warm anomaly is switched on, along with ocean coupling (day 0). Enhanced deep convection rapidly develops near the hot spot, forcing an anomalous large-scale circulation that resembles the linear response of a dry atmosphere to a localized heating, as in the Gill model. Enhanced convection, the anomalous large-scale circulation, and enhanced wind speed peak in amplitude at about day 15. Enhanced latent heat fluxes driven primarily by an increase in vector mean wind damp the anomalous heat content of the ocean near the hot spot before day 20. Between day 20 and day 50, suppressed latent heat fluxes due to suppressed synoptic eddy variance cause a warming of the remote Tropics in regions of anomalous low-level easterly flow. This wind-driven evaporative atmosphere–ocean exchange results in a 60–70-day oscillation in tropical mean oceanic heat content, accompanied by a compensating out-of-phase oscillation in vertically integrated atmospheric moist static energy. Beyond day 70 of the simulation, positive SST anomalies are found across much of the tropical belt. These slowly decay toward the 28°C background state.

MAUSAM ◽  
2021 ◽  
Vol 50 (4) ◽  
pp. 391-400
Author(s):  
BIJU THOMAS ◽  
S.V. KASTURE ◽  
S. V. SATYAN

A global, spectral Atmospheric General Circulation Model (AGCM) has been developed indigenously at Physical Research Laboratory (PRL) for climate studies. The model has six a levels in the vertical and has horizontal resolution of 21 waves with rhomboidal truncation. The model includes smooth topography, planetary boundary layer, deep convection, large scale condensation, interactive hydrology, radiation with interactive clouds and diurnal cycle. Sea surface temperature and sea ice values were fixed based on climatological data for different calender months.   The model was integrated for six years starting with an isothermal atmosphere (2400K), zero winds initial conditions and forcing from incoming solar radiation. After one year the model stabilizes. The seasonal averages of various fields of the last five years are discussed in this paper. It is found that the model reproduces reasonably well the seasonal features of atmospheric circulation, seasonal variability and hemispheric differences.


2013 ◽  
Vol 10 (1) ◽  
pp. 27-53 ◽  
Author(s):  
M. Sonnewald ◽  
J. J.-M. Hirschi ◽  
R. Marsh

Abstract. Ocean heat content varies on a range of timescales. Traditionally the atmosphere is seen to dominate the oceanic heat content variability. However, this variability can be driven either by oceanic or atmospheric heat fluxes. To diagnose the relative contributions and respective timescales, this study uses a box model forced with output from an ocean general circulation model (OGCM) to investigate the heat content variability of the upper 800 m of the subtropical North Atlantic from 26° N to 36° N. The ocean and air-sea heat flux data needed to force the box model is taken from a 19 yr (1988 to 2006) simulation performed with the 1/12° version of the OCCAM OGCM. The box model heat content is compared to the corresponding heat content in OCCAM for verification. The main goal of the study is to identify to what extent the seasonal to interannual ocean heat content variability is of atmospheric or oceanic origin. To this end, the box model is subjected to a range of scenarios forced either with the full (detrended) ocean and air-sea fluxes, or their deseasoned counterparts. Results show that in all cases, the seasonal variability is dominated by the seasonal component of the air-sea fluxes, which produce a seasonal range in mean temperature of the upper 800 m of ~ 0.42 °C. However, on longer timescales oceanic heat transport dominates, with changes of up to ~ 0.30 °C over 4 yr. The technique is subsequently applied to observational data. For the ocean heat fluxes, we use data from the RAPID program at 26° N from April 2004 to January 2011. At 36° N heat transport is inferred using a linear regression model based on the oceanic low-frequency transport in OCCAM. The air-sea flux from OCCAM is used for the period 2004 to 2006 when the RAPID timeseries and the OCCAM simulation overlap, and a climatology is used for the air-sea flux from 2006 onwards. The results confirm that on longer (> 2 yr) timescales the ocean dominates the ocean heat content variability, which is further verified using data from the ARGO project. This work illustrates that oceanic divergence significantly impacts the ocean heat content variability on timescales relevant for applications such as seasonal hurricane forecasts.


2015 ◽  
Vol 143 (3) ◽  
pp. 778-793 ◽  
Author(s):  
Andrea Alessandri ◽  
Andrea Borrelli ◽  
Annalisa Cherchi ◽  
Stefano Materia ◽  
Antonio Navarra ◽  
...  

Abstract Ensembles of retrospective 2-month dynamical forecasts initiated on 1 May are used to predict the onset of the Indian summer monsoon (ISM) for the period 1989–2005. The subseasonal predictions (SSPs) are based on a coupled general circulation model and recently they have been upgraded by the realistic initialization of the atmosphere with initial conditions taken from reanalysis. Two objective large-scale methods based on dynamical-circulation and hydrological indices are applied to detect the ISM onset. The SSPs show some skill in forecasting earlier-than-normal ISM onsets, while they have difficulty in predicting late onsets. It is shown that significant contribution to the skill in forecasting early ISM onsets comes from the newly developed initialization of the atmosphere from reanalysis. On one hand, atmospheric initialization produces a better representation of the atmospheric mean state in the initial conditions, leading to a systematically improved monsoon onset sequence. On the other hand, the initialization of the atmosphere allows some skill in forecasting the northward-propagating intraseasonal wind and precipitation anomalies over the tropical Indian Ocean. The northward-propagating intraseasonal modes trigger the monsoon in some early-onset years. The realistic phase initialization of these modes improves the forecasts of the associated earlier-than-normal monsoon onsets. The prediction of late onsets is not noticeably improved by the initialization of the atmosphere. It is suggested that late onsets of the monsoon are too far away from the start date of the forecasts to conserve enough memory of the intraseasonal oscillation (ISO) anomalies and of the improved representation of the mean state in the initial conditions.


2017 ◽  
Vol 30 (22) ◽  
pp. 9147-9166 ◽  
Author(s):  
Max Popp ◽  
Levi G. Silvers

A major bias in tropical precipitation over the Pacific in climate simulations stems from the models’ tendency to produce two strong distinct intertropical convergence zones (ITCZs) too often. Several mechanisms have been proposed that may contribute to the emergence of two ITCZs, but current theories cannot fully explain the bias. This problem is tackled by investigating how the interaction between atmospheric cloud-radiative effects (ACREs) and the large-scale circulation influences the ITCZ position in an atmospheric general circulation model. Simulations are performed in an idealized aquaplanet setup and the longwave and shortwave ACREs are turned off individually or jointly. The low-level moist static energy (MSE) is shown to be a good predictor of the ITCZ position. Therefore, a mechanism is proposed that explains the changes in MSE and thus ITCZ position due to ACREs consistently across simulations. The mechanism implies that the ITCZ moves equatorward if the Hadley circulation strengthens because of the increased upgradient advection of low-level MSE off the equator. The longwave ACRE increases the meridional heating gradient in the tropics and as a response the Hadley circulation strengthens and the ITCZ moves equatorward. The shortwave ACRE has the opposite effect. The total ACRE pulls the ITCZ equatorward. This mechanism is discussed in other frameworks involving convective available potential energy, gross moist stability, and the energy flux equator. It is thus shown that the response of the large-scale circulation to the shortwave and longwave ACREs is a fundamental driver of changes in the ITCZ position.


2021 ◽  
Author(s):  
Fanglou Liao ◽  
Xiao Hua Wang ◽  
Zhiqiang Liu

Abstract. The ocean heat content (OHC) estimates from high-resolution hindcast simulations from the Ocean General Circulation Model for the Earth Simulator Version 1 (OFES1) and Version 2 (OFES2), and a global objective analysis of subsurface temperature observations (EN4.2.1) were compared. There was an OHC increase in most of the global ocean over a 57-year period, mainly a result of vertical displacements of neutral density surfaces. However, we found substantial differences in the temporal and meridional distributions of the OHC between the two OFES hindcasts. The spatial distributions of potential-temperature change also differed significantly, especially in the Atlantic Ocean. The spatial distributions of the time-averaged surface heat flux and heat transport from the OFES1 and OFES2 were highly correlated, but differences could be seen. However, these differences, more specifically in the heat transport, were only partially responsible for the OHC differences. The marked OHC differences may arise from the different vertical mixing schemes and may impact the large-scale pressure field, and thus the geostrophic current. The work here should be a useful reference for future OFES users.


2009 ◽  
Vol 66 (3) ◽  
pp. 579-601 ◽  
Author(s):  
Tapio Schneider ◽  
Junjun Liu

Abstract The zonal flow in Jupiter’s upper troposphere is organized into alternating retrograde and prograde jets, with a prograde (superrotating) jet at the equator. Existing models posit as the driver of the flow either differential radiative heating of the atmosphere or intrinsic heat fluxes emanating from the deep interior; however, they do not reproduce all large-scale features of Jupiter’s jets and thermal structure. Here it is shown that the difficulties in accounting for Jupiter’s jets and thermal structure resolve if the effects of differential radiative heating and intrinsic heat fluxes are considered together, and if upper-tropospheric dynamics are linked to a magnetohydrodynamic (MHD) drag that acts deep in the atmosphere and affects the zonal flow away from but not near the equator. Baroclinic eddies generated by differential radiative heating can account for the off-equatorial jets; meridionally propagating equatorial Rossby waves generated by intrinsic convective heat fluxes can account for the equatorial superrotation. The zonal flow extends deeply into the atmosphere, with its speed changing with depth, away from the equator up to depths at which the MHD drag acts. The theory is supported by simulations with an energetically consistent general circulation model of Jupiter’s outer atmosphere. A simulation that incorporates differential radiative heating and intrinsic heat fluxes reproduces Jupiter’s observed jets and thermal structure and makes testable predictions about as yet unobserved aspects thereof. A control simulation that incorporates only differential radiative heating but not intrinsic heat fluxes produces off-equatorial jets but no equatorial superrotation; another control simulation that incorporates only intrinsic heat fluxes but not differential radiative heating produces equatorial superrotation but no off-equatorial jets. The proposed mechanisms for the formation of jets and equatorial superrotation likely act in the atmospheres of all giant planets.


2008 ◽  
Vol 65 (11) ◽  
pp. 3571-3583 ◽  
Author(s):  
Tapio Schneider ◽  
Paul A. O’Gorman

Abstract Simulations with an aquaplanet general circulation model show that sensible and latent heat transport by large-scale eddies influences the extratropical thermal stratification over a wide range of climates, even in relatively warm climates with small meridional surface temperature gradients. Variations of the lapse rate toward which the parameterized moist convection in the model relaxes atmospheric temperature profiles demonstrate that the convective lapse rate only marginally affects the extratropical thermal stratification in Earth-like and colder climates. In warmer climates, the convective lapse rate does affect the extratropical thermal stratification, but the effect is still smaller than would be expected if moist convection alone controlled the thermal stratification. A theory for how large-scale eddies modify the thermal stratification of dry atmospheres is consistent with the simulation results for colder climates. For warmer and moister climates, however, theories and heuristics that have been proposed to account for the extratropical thermal stratification are not consistent with the simulation results. Theories for the extratropical thermal stratification will generally have to take transport of sensible and latent heat by large-scale eddies into account, but moist convection may only need to be taken into account regionally and in sufficiently warm climates.


2009 ◽  
Vol 27 (10) ◽  
pp. 3989-4007 ◽  
Author(s):  
Y. C. Sud ◽  
E. Wilcox ◽  
W. K.-M. Lau ◽  
G. K. Walker ◽  
X.-H. Liu ◽  
...  

Abstract. Version-4 of the Goddard Earth Observing System (GEOS-4) General Circulation Model (GCM) was employed to assess the influence of potential changes in aerosols on the regional circulation, ambient temperatures, and precipitation in four selected regions: India and Africa (current paper), as well as North and South America (companion paper). Ensemble-simulations were carried out with the GCM to assess the aerosol direct and indirect effects, hereafter ADE and AIE. Each simulation was started from the NCEP-analyzed initial conditions for 1 May and was integrated through May-June-July-August of each year: 1982–1987 to provide an ensemble set of six simulations. In the first set, called experiment (#1), climatological aerosols were prescribed. The next two experiments (#2 and #3) had two sets of simulations each: one with 2X and other with 1/2X the climatological aerosols over each of the four selected regions. In experiment #2, the anomaly regions were advectively restricted (AR), i.e., the large-scale prognostic fields outside the aerosol anomaly regions were prescribed while in experiment #3, the anomaly regions were advectively Interactive (AI) as is the case in a normal GCM integrations, but with the same aerosols anomalies as in experiment #2. Intercomparisons of circulation, diabatic heating, and precipitation difference fields showed large disparities among the AR and AI simulations, which raised serious questions about the proverbial AR assumption, commonly invoked in regional climate simulation studies. Consequently AI simulation mode was chosen for the subsequent studies. Two more experiments (#4 and #5) were performed in the AI mode in which ADE and AIE were activated one at a time. The results showed that ADE and AIE work in concert to make the joint influences larger than sum of each acting alone. Moreover, the ADE and AIE influences were vastly different for the Indian and Africa regions, which suggest an imperative need to include them rationally in climate models. We also found that the aerosol induced increase of tropical cirrus clouds would potentially offset any cirrus thinning that may occur due to warming in response to CO2 increase.


2017 ◽  
Vol 74 (7) ◽  
pp. 2143-2162 ◽  
Author(s):  
Ray Yamada ◽  
Olivier Pauluis

Abstract Previous studies show that the moist Eliassen–Palm (EP) flux captures a greater eddy momentum exchange through form drag than the dry EP flux in the midlatitude climate. This suggests that the eddy moisture flux acts to decrease the baroclinicity of the zonal jet. This study investigates such a mechanism in moist baroclinic life cycles, which are simulated in an idealized general circulation model with large-scale condensation as the only moist process. The runs are analyzed using a linear diagnostic based on the Kuo–Eliassen equation to decompose the jet change into parts driven by individual forcing terms. It is shown that the wave-induced latent heating drives an indirect Eulerian-mean cell on the equatorward flank of the jet, which acts to reduce the baroclinicity in that region. The eddy sensible heat fluxes act to reduce the baroclinicity near the center of the jet. The moist baroclinic forcing strengthens as the amount of initially available moisture increases. The effect of the eddy moisture flux on the transformed Eulerian-mean (TEM) and isentropic dynamics is also considered. It is shown that the circulation and EP flux on moist isentropes is around 4 times as strong and extends farther equatorward than on dry isentropes. The equatorward extension of the moist EP flux coincides with the region where the baroclinic forcing is driven by latent heating. The moist EP flux successfully captures the moisture-driven component of the baroclinic forcing that is not seen in the dry EP flux.


Sign in / Sign up

Export Citation Format

Share Document