scholarly journals Origin of the Springtime Westerly Bias in Equatorial Atlantic Surface Winds in the Community Atmosphere Model Version 3 (CAM3) Simulation

2008 ◽  
Vol 21 (18) ◽  
pp. 4766-4778 ◽  
Author(s):  
Ching-Yee Chang ◽  
Sumant Nigam ◽  
James A. Carton

Abstract This study makes the case that westerly bias in the surface winds of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 3 (CAM3), over the equatorial Atlantic in boreal spring has its origin in the rainfall (diabatic heating) bias over the tropical South American continent. The case is made by examination of the spatiotemporal evolution of regional precipitation and wind biases and by dynamical diagnoses of the westerly wind bias from experiments with a steady, linearized dynamical core of an atmospheric general circulation model. Diagnostic modeling indicates that underestimating rainfall over the eastern Amazon region can lead to the westerly bias in equatorial Atlantic surface winds. The study suggests that efforts to reduce coupled model biases, especially seasonal ones, must target continental biases, even in the deep tropics where ocean–atmosphere interaction generally rules.

2006 ◽  
Vol 19 (11) ◽  
pp. 2144-2161 ◽  
Author(s):  
William D. Collins ◽  
Philip J. Rasch ◽  
Byron A. Boville ◽  
James J. Hack ◽  
James R. McCaa ◽  
...  

Abstract A new version of the Community Atmosphere Model (CAM) has been developed and released to the climate community. CAM Version 3 (CAM3) is an atmospheric general circulation model that includes the Community Land Model (CLM3), an optional slab ocean model, and a thermodynamic sea ice model. The dynamics and physics in CAM3 have been changed substantially compared to implementations in previous versions. CAM3 includes options for Eulerian spectral, semi-Lagrangian, and finite-volume formulations of the dynamical equations. It supports coupled simulations using either finite-volume or Eulerian dynamics through an explicit set of adjustable parameters governing the model time step, cloud parameterizations, and condensation processes. The model includes major modifications to the parameterizations of moist processes, radiation processes, and aerosols. These changes have improved several aspects of the simulated climate, including more realistic tropical tropopause temperatures, boreal winter land surface temperatures, surface insolation, and clear-sky surface radiation in polar regions. The variation of cloud radiative forcing during ENSO events exhibits much better agreement with satellite observations. Despite these improvements, several systematic biases reduce the fidelity of the simulations. These biases include underestimation of tropical variability, errors in tropical oceanic surface fluxes, underestimation of implied ocean heat transport in the Southern Hemisphere, excessive surface stress in the storm tracks, and offsets in the 500-mb height field and the Aleutian low.


2006 ◽  
Vol 19 (11) ◽  
pp. 2199-2221 ◽  
Author(s):  
James J. Hack ◽  
Julie M. Caron ◽  
Stephen G. Yeager ◽  
Keith W. Oleson ◽  
Marika M. Holland ◽  
...  

Abstract The seasonal and annual climatological behavior of selected components of the hydrological cycle are presented from coupled and uncoupled configurations of the atmospheric component of the Community Climate System Model (CCSM) Community Atmosphere Model version 3 (CAM3). The formulations of processes that play a role in the hydrological cycle are significantly more complex when compared with earlier versions of the atmospheric model. Major features of the simulated hydrological cycle are compared against available observational data, and the strengths and weaknesses are discussed in the context of specified sea surface temperature and fully coupled model simulations. The magnitude of the CAM3 hydrological cycle is weaker than in earlier versions of the model, and is more consistent with observational estimates. Major features of the exchange of water with the surface, and the vertically integrated storage of water in the atmosphere, are generally well captured on seasonal and longer time scales. The water cycle response to ENSO events is also very realistic. The simulation, however, continues to exhibit a number of long-standing biases, such as a tendency to produce double ITCZ-like structures in the deep Tropics, and to overestimate precipitation rates poleward of the extratropical storm tracks. The lower-tropospheric dry bias, associated with the parameterized treatment of convection, also remains a simulation deficiency. Several of these biases are exacerbated when the atmosphere is coupled to fully interactive surface models, although the larger-scale behavior of the hydrological cycle remains nearly identical to simulations with prescribed distributions of sea surface temperature and sea ice.


2015 ◽  
Vol 8 (3) ◽  
pp. 817-828 ◽  
Author(s):  
B. Lebassi-Habtezion ◽  
P. M. Caldwell

Abstract. Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important). By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm−3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.


2015 ◽  
Vol 72 (5) ◽  
pp. 2183-2197 ◽  
Author(s):  
Kevin A. Reed ◽  
Brian Medeiros ◽  
Julio T. Bacmeister ◽  
Peter H. Lauritzen

Abstract In the continued effort to understand the climate system and improve its representation in atmospheric general circulation models (AGCMs), it is crucial to develop reduced-complexity frameworks to evaluate these models. This is especially true as the AGCM community advances toward high horizontal resolutions (i.e., grid spacing less than 50 km), which will require interpreting and improving the performance of many model components. A simplified global radiative–convective equilibrium (RCE) configuration is proposed to explore the implication of horizontal resolution on equilibrium climate. RCE is the statistical equilibrium in which the radiative cooling of the atmosphere is balanced by heating due to convection. In this work, the Community Atmosphere Model, version 5 (CAM5), is configured in RCE to better understand tropical climate and extremes. The RCE setup consists of an ocean-covered Earth with diurnally varying, spatially uniform insolation and no rotation effects. CAM5 is run at two horizontal resolutions: a standard resolution of approximately 100-km grid spacing and a high resolution of approximately 25-km spacing. Surface temperature effects are considered by comparing simulations using fixed, uniform sea surface temperature with simulations using an interactive slab-ocean model. The various CAM5 configurations provide useful insights into the simulation of tropical climate as well as the model’s ability to simulate extreme precipitation events. In particular, the manner in which convection organizes is shown to be dependent on model resolution and the surface configuration (including surface temperature), as evident by differences in cloud structure, circulation, and precipitation intensity.


2007 ◽  
Vol 20 (2) ◽  
pp. 353-374 ◽  
Author(s):  
J. Ballabrera-Poy ◽  
R. Murtugudde ◽  
R-H. Zhang ◽  
A. J. Busalacchi

Abstract The ability to use remotely sensed ocean color data to parameterize biogenic heating in a coupled ocean–atmosphere model is investigated. The model used is a hybrid coupled model recently developed at the Earth System Science Interdisciplinary Center (ESSIC) by coupling an ocean general circulation model with a statistical atmosphere model for wind stress anomalies. The impact of the seasonal cycle of water turbidity on the annual mean, seasonal cycle, and interannual variability of the coupled system is investigated using three simulations differing in the parameterization of the vertical attenuation of downwelling solar radiation: (i) a control simulation using a constant 17-m attenuation depth, (ii) a simulation with the spatially varying annual mean of the satellite-derived attenuation depth, and (iii) a simulation accounting for the seasonal cycle of the attenuation depth. The results indicate that a more realistic attenuation of solar radiation slightly reduces the cold bias of the model. While a realistic attenuation of solar radiation hardly affects the annual mean and the seasonal cycle due to anomaly coupling, it significantly affects the interannual variability, especially when the seasonal cycle of the attenuation depth is used. The seasonal cycle of the attenuation depth interacts with the low-frequency equatorial dynamics to enhance warm and cold anomalies, which are further amplified via positive air–sea feedbacks. These results also indicate that interannual variability of the attenuation depths is required to capture the asymmetric biological feedbacks during cold and warm ENSO events.


2017 ◽  
Vol 24 (4) ◽  
pp. 681-694 ◽  
Author(s):  
Yuxin Zhao ◽  
Xiong Deng ◽  
Shaoqing Zhang ◽  
Zhengyu Liu ◽  
Chang Liu ◽  
...  

Abstract. Climate signals are the results of interactions of multiple timescale media such as the atmosphere and ocean in the coupled earth system. Coupled data assimilation (CDA) pursues balanced and coherent climate analysis and prediction initialization by incorporating observations from multiple media into a coupled model. In practice, an observational time window (OTW) is usually used to collect measured data for an assimilation cycle to increase observational samples that are sequentially assimilated with their original error scales. Given different timescales of characteristic variability in different media, what are the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA? With a simple coupled model that simulates typical scale interactions in the climate system and twin CDA experiments, we address this issue here. Results show that in each coupled medium, an optimal OTW can provide maximal observational information that best fits the characteristic variability of the medium during the data blending process. Maintaining correct scale interactions, the resulting CDA improves the analysis of climate signals greatly. These simple model results provide a guideline for when the real observations are assimilated into a coupled general circulation model for improving climate analysis and prediction initialization by accurately recovering important characteristic variability such as sub-diurnal in the atmosphere and diurnal in the ocean.


Sign in / Sign up

Export Citation Format

Share Document