Tropical Water Vapor and Cloud Feedbacks in Climate Models: A Further Assessment Using Coupled Simulations

2009 ◽  
Vol 22 (5) ◽  
pp. 1287-1304 ◽  
Author(s):  
De-Zheng Sun ◽  
Yongqiang Yu ◽  
Tao Zhang

Abstract By comparing the response of clouds and water vapor to ENSO forcing in nature with that in Atmospheric Model Intercomparison Project (AMIP) simulations by some leading climate models, an earlier evaluation of tropical cloud and water vapor feedbacks has revealed the following two common biases in the models: 1) an underestimate of the strength of the negative cloud albedo feedback and 2) an overestimate of the positive feedback from the greenhouse effect of water vapor. Extending the same analysis to the fully coupled simulations of these models as well as other Intergovernmental Panel on Climate Change (IPCC) coupled models, it is found that these two biases persist. Relative to the earlier estimates from AMIP simulations, the overestimate of the positive feedback from water vapor is alleviated somewhat for most of the coupled simulations. Improvements in the simulation of the cloud albedo feedback are only found in the models whose AMIP runs suggest either a positive or nearly positive cloud albedo feedback. The strength of the negative cloud albedo feedback in all other models is found to be substantially weaker than that estimated from the corresponding AMIP simulations. Consequently, although additional models are found to have a cloud albedo feedback in their AMIP simulations that is as strong as in the observations, all coupled simulations analyzed in this study have a weaker negative feedback from the cloud albedo and therefore a weaker negative feedback from the net surface heating than that indicated in observations. The weakening in the cloud albedo feedback is apparently linked to a reduced response of deep convection over the equatorial Pacific, which is in turn linked to the excessive cold tongue in the mean climate of these models. The results highlight that the feedbacks of water vapor and clouds—the cloud albedo feedback in particular—may depend on the mean intensity of the hydrological cycle. Whether the intermodel variations in the feedback from cloud albedo (water vapor) in the ENSO variability are correlated with the intermodel variations of the feedback from cloud albedo (water vapor) in global warming has also been examined. While a weak positive correlation between the intermodel variations in the feedback of water vapor during ENSO and the intermodel variations in the water vapor feedback during global warming was found, there is no significant correlation found between the intermodel variations in the cloud albedo feedback during ENSO and the intermodel variations in the cloud albedo feedback during global warming. The results suggest that the two common biases revealed in the simulated ENSO variability may not necessarily be carried over to the simulated global warming. These biases, however, highlight the continuing difficulty that models have in simulating accurately the feedbacks of water vapor and clouds on a time scale of the observations available.

2009 ◽  
Vol 22 (23) ◽  
pp. 6404-6412 ◽  
Author(s):  
A. E. Dessler ◽  
S. Wong

Abstract The strength of the water vapor feedback has been estimated by analyzing the changes in tropospheric specific humidity during El Niño–Southern Oscillation (ENSO) cycles. This analysis is done in climate models driven by observed sea surface temperatures [Atmospheric Model Intercomparison Project (AMIP) runs], preindustrial runs of fully coupled climate models, and in two reanalysis products, the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) and the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA). The water vapor feedback during ENSO-driven climate variations in the AMIP models ranges from 1.9 to 3.7 W m−2 K−1, in the control runs it ranges from 1.4 to 3.9 W m−2 K−1, and in the ERA-40 and MERRA it is 3.7 and 4.7 W m−2 K−1, respectively. Taken as a group, these values are higher than previous estimates of the water vapor feedback in response to century-long global warming. Also examined is the reason for the large spread in the ENSO-driven water vapor feedback among the models and between the models and the reanalyses. The models and the reanalyses show a consistent relationship between the variations in the tropical surface temperature over an ENSO cycle and the radiative response to the associated changes in specific humidity. However, the feedback is defined as the ratio of the radiative response to the change in the global average temperature. Differences in extratropical temperatures will, therefore, lead to different inferred feedbacks, and this is the root cause of spread in feedbacks observed here. This is also the likely reason that the feedback inferred from ENSO is larger than for long-term global warming.


2006 ◽  
Vol 19 (11) ◽  
pp. 2617-2630 ◽  
Author(s):  
Xin Qu ◽  
Alex Hall

Abstract In this paper, the two factors controlling Northern Hemisphere springtime snow albedo feedback in transient climate change are isolated and quantified based on scenario runs of 17 climate models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The first factor is the dependence of planetary albedo on surface albedo, representing the atmosphere's attenuation effect on surface albedo anomalies. It is potentially a major source of divergence in simulations of snow albedo feedback because of large differences in simulated cloud fields in Northern Hemisphere land areas. To calculate the dependence, an analytical model governing planetary albedo was developed. Detailed validations of the analytical model for two of the simulations are shown, version 3 of the Community Climate System Model (CCSM3) and the Geophysical Fluid Dynamics Laboratory global coupled Climate Model 2.0 (CM2.0), demonstrating that it facilitates a highly accurate calculation of the dependence of planetary albedo on surface albedo given readily available simulation output. In all simulations it is found that surface albedo anomalies are attenuated by approximately half in Northern Hemisphere land areas as they are transformed into planetary albedo anomalies. The intermodel standard deviation in the dependence of planetary albedo on surface albedo is surprisingly small, less than 10% of the mean. Moreover, when an observational estimate of this factor is calculated by applying the same method to the satellite-based International Satellite Cloud Climatology Project (ISCCP) data, it is found that most simulations agree with ISCCP values to within about 10%, despite further disagreements between observed and simulated cloud fields. This suggests that even large relative errors in simulated cloud fields do not result in significant error in this factor, enhancing confidence in climate models. The second factor, related exclusively to surface processes, is the change in surface albedo associated with an anthropogenically induced temperature change in Northern Hemisphere land areas. It exhibits much more intermodel variability. The standard deviation is about ⅓ of the mean, with the largest value being approximately 3 times larger than the smallest. Therefore this factor is unquestionably the main source of the large divergence in simulations of snow albedo feedback. To reduce the divergence, attention should be focused on differing parameterizations of snow processes, rather than intermodel variations in the attenuation effect of the atmosphere on surface albedo anomalies.


2006 ◽  
Vol 19 (20) ◽  
pp. 5455-5464 ◽  
Author(s):  
Ken Minschwaner ◽  
Andrew E. Dessler ◽  
Parnchai Sawaengphokhai

Abstract Relationships between the mean humidity in the tropical upper troposphere and tropical sea surface temperatures in 17 coupled ocean–atmosphere global climate models were investigated. This analysis builds on a prior study of humidity and surface temperature measurements that suggested an overall positive climate feedback by water vapor in the tropical upper troposphere whereby the mean specific humidity increases with warmer sea surface temperature (SST). The model results for present-day simulations show a large range in mean humidity, mean air temperature, and mean SST, but they consistently show increases in upper-tropospheric specific humidity with warmer SST. The model average increase in water vapor at 250 mb with convective mean SST is 44 ppmv K−1, with a standard deviation of 14 ppmv K−1. Furthermore, the implied feedback in the models is not as strong as would be the case if relative humidity remained constant in the upper troposphere. The model mean decrease in relative humidity is −2.3% ± 1.0% K−1 at 250 mb, whereas observations indicate decreases of −4.8% ± 1.7% K−1 near 215 mb. These two values agree within the respective ranges of uncertainty, indicating that current global climate models are simulating the observed behavior of water vapor in the tropical upper troposphere with reasonable accuracy.


2009 ◽  
Vol 22 (14) ◽  
pp. 3993-4013 ◽  
Author(s):  
Guillaume Gastineau ◽  
Laurent Li ◽  
Hervé Le Treut

Abstract Sea surface temperature (SST) changes constitute a major indicator and driver of climate changes induced by greenhouse gas increases. The objective of the present study is to investigate the role played by the detailed structure of the SST change on the large-scale atmospheric circulation and the distribution of precipitation. For that purpose, simulations from the Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL-CM4) are used where the carbon dioxide (CO2) concentration is doubled. The response of IPSL-CM4 is characterized by the same robust mechanisms affecting the other coupled models in global warming simulations, that is, an increase of the hydrological cycle accompanied by a global weakening of the large-scale circulation. First, purely atmospheric simulations are performed to mimic the results of the coupled model. Then, specific simulations are set up to further study the underlying atmospheric mechanisms. These simulations use different prescribed SST anomalies, which correspond to a linear decomposition of the IPSL-CM4 SST changes in global, longitudinal, and latitudinal components. The simulation using a globally uniform increase of the SST is able to reproduce the modifications in the intensity of the hydrological cycle or in the mean upward mass flux, which also characterize the double CO2 simulation with the coupled model. But it is necessary (and largely sufficient) to also take into account the zonal-mean meridional structure of the SST changes to represent correctly the changes in the Hadley circulation strength or the zonal-mean precipitation changes simulated by the coupled model, even if these meridional changes by themselves do not change the mean thermodynamical state of the tropical atmosphere. The longitudinal SST anomalies of IPSL-CM4 also have an impact on the precipitation and large-scale tropical circulation and tend to introduce different changes over the Pacific and Atlantic Oceans. The longitudinal SST changes are demonstrated to have a smaller but opposite effect from that of the meridional anomalies on the Hadley cell circulations. Results indicate that the uncertainties in the simulated meridional patterns of the SST warming may have major consequences on the assessment of the changes of the Hadley circulation and zonal-mean precipitation in future climate projections.


2011 ◽  
Vol 24 (9) ◽  
pp. 2358-2367 ◽  
Author(s):  
Christopher Pennell ◽  
Thomas Reichler

Abstract Projections of future climate change are increasingly based on the output of many different models. Typically, the mean over all model simulations is considered as the optimal prediction, with the underlying assumption that different models provide statistically independent information evenly distributed around the true state. However, there is reason to believe that this is not the best assumption. Coupled models are of comparable complexity and are constructed in similar ways. Some models share parts of the same code and some models are even developed at the same center. Therefore, the limitations of these models tend to be fairly similar, contributing to the well-known problem of common model biases and possibly to an unrealistically small spread in the outcomes of model predictions. This study attempts to quantify the extent of this problem by asking how many models there effectively are and how to best determine this number. Quantifying the effective number of models is achieved by evaluating 24 state-of-the-art models and their ability to simulate broad aspects of twentieth-century climate. Using two different approaches, the amount of unique information in the ensemble is calculated and the effective ensemble size is found to be much smaller than the actual number of models. As more models are included in an ensemble, the amount of new information diminishes in proportion. Furthermore, this reduction is found to go beyond the problem of “same center” models and systemic similarities are seen to exist across all models. The results suggest that current methodologies for the interpretation of multimodel ensembles may lead to overly confident climate predictions.


2021 ◽  
pp. 1-52
Author(s):  
Pengfei Zhang ◽  
Gang Chen ◽  
Weiming Ma ◽  
Yi Ming ◽  
Zheng Wu

AbstractAtmospheric rivers (ARs), narrow intense moisture transport, account for much of the poleward moisture transport in midlatitudes. While studies have characterized AR features and the associated hydrological impacts in a warming climate in observations and comprehensive climate models, the fundamental dynamics for changes in AR statistics (e.g., frequency, length, width) are not well understood. Here we investigate AR response to global warming with a combination of idealized and comprehensive climate models. To that end, we developed an idealized atmospheric GCM with Earth-like global circulation and hydrological cycle, in which water vapor and clouds are modeled as passive tracers with simple cloud microphysics and precipitation processes. Despite the simplicity of model physics, it reasonably reproduces observed dynamical structures for individual ARs, statistical characteristics of ARs, and spatial distributions of AR climatology. Under climate warming, the idealized model produces robust AR changes similar to CESM large ensemble simulations under RCP8.5, including AR size expansion, intensified landfall moisture transport, and an increased AR frequency, corroborating previously reported AR changes under global warming by climate models. In addition, the latitude of AR frequency maximum shifts poleward with climate warming. Further analysis suggests the thermodynamic effect (i.e., an increase in water vapor) dominates the AR statistics and frequency changes while both the dynamic and thermodynamic effects contribute to the AR poleward shift. These results demonstrate that AR changes in a warming climate can be understood as passive water vapor and cloud tracers regulated by large-scale atmospheric circulation, whereas convection and latent heat feedback are of secondary importance.


2014 ◽  
Vol 27 (19) ◽  
pp. 7301-7318 ◽  
Author(s):  
Xiaoliang Song ◽  
Guang J. Zhang

Abstract Under global warming from the doubling of CO2, the equatorial Pacific experiences an El Niño–like warming, as simulated by most global climate models. A new climate feedback and response analysis method (CFRAM) is applied to 10 years of hourly output of the slab ocean model (SOM) version of the NCAR Community Climate System Model, version 3.0, (CCSM3-SOM) to determine the processes responsible for this warming. Unlike the traditional surface heat budget analysis, the CFRAM can explicitly quantify the contributions of each radiative climate feedback and of each physical and dynamical process of a GCM to temperature changes. The mean bias in the sum of partial SST changes due to each feedback derived with CFRAM in the tropical Pacific is negligible (0.5%) compared to the mean SST change from the CCSM3-SOM simulations, with a spatial pattern correlation of 0.97 between the two. The analysis shows that the factors contributing to the El Niño–like SST warming in the central Pacific are different from those in the eastern Pacific. In the central Pacific, the largest contributor to El Niño–like SST warming is dynamical advection, followed by PBL diffusion, water vapor feedback, and surface evaporation. In contrast, in the eastern Pacific the dominant contributor to El Niño–like SST warming is cloud feedback, with water vapor feedback further amplifying the warming.


2015 ◽  
Vol 12 (7) ◽  
pp. 7267-7325 ◽  
Author(s):  
L. V. Papadimitriou ◽  
A. G. Koutroulis ◽  
M. G. Grillakis ◽  
I. K. Tsanis

Abstract. Climate models project a much more substantial warming than the 2 °C target making higher end scenarios increasingly plausible. Freshwater availability under such conditions is a key issue of concern. In this study, an ensemble of Euro-CORDEX projections under RCP8.5 is used to assess the mean and low hydrological states under +4 °C of global warming for the European region. Five major European catchments were analyzed in terms of future drought climatology and the impact of +2 vs. +4 °C global warming was investigated. The effect of bias correction of the climate model outputs and the observations used for this adjustment was also quantified. Projections indicate an intensification of the water cycle at higher levels of warming. Even for areas where the average state may not considerably be affected, low flows are expected to reduce leading to changes in the number of dry days and thus drought climatology. The identified increasing or decreasing runoff trends are substantially intensified when moving from the +2 to the +4 °C of global warming. Bias correction resulted in an improved representation of the historical hydrology. It is also found that the selection of the observational dataset for the application of the bias correction has an impact on the projected signal that could be of the same order of magnitude to the selection of the RCM.


2016 ◽  
Vol 2 (6) ◽  
pp. e1501572 ◽  
Author(s):  
Marc Salzmann

Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K−1 decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.


Sign in / Sign up

Export Citation Format

Share Document