scholarly journals Verification of a High-Resolution Model Forecast Using Airborne Doppler Radar Analysis during the Rapid Intensification of Hurricane Guillermo

2010 ◽  
Vol 49 (4) ◽  
pp. 807-820 ◽  
Author(s):  
X. Zou ◽  
Yonghui Wu ◽  
Peter Sawin Ray

Abstract The NOAA Hurricane Research Division (HRD) P-3 aircraft provided airborne radar observations during the period of rapid intensification of Hurricane Guillermo on 2 August 1997. The inner core structure and evolution of Hurricane Guillermo (1997) over a 120 km by 120 km square area, centered on the storm, was observed by the P-3 aircraft during 10 flight legs at half-hour intervals during a 6-h period from 1800 UTC 2 August to 0000 UTC 3 August 1997. A high-resolution short-term model forecast initialized at 1800 UTC 2 August 1997 was made using the fifth-generation Pennsylvania State University–NCAR nonhydrostatic, two-way interactive, movable, triply nested grid Mesoscale Model (MM5). The weak vortex at the initial time in the NCEP analysis was replaced by a tropical storm–like vortex generated by a 4D variational data assimilation (4D-Var) vortex initialization experiment. The modeled Guillermo followed the observed track with less than a 12-km track error at any time during the 6-h forecast period. The modeled eye is smaller than the observed eye and the modeled vortex is more upright than shown by the radar analysis. The minimum pressure, maximum wind (intensity), and radial profile of tangential winds are close to the radar analysis after 2–3 h of model spinup. A spectral decomposition further reveals that (i) large differences between the model simulation and radar analysis of the asymmetric features are mostly caused by azimuthal phase errors; (ii) the wavenumber 1 component dominates the asymmetric features and remains stationary within the inner core region, as is also observed by airborne Doppler radar; and (iii) although being significantly different from radar analysis, the azimuthal phase of the wavenumber 1 component of modeled reflectivity does not vary greatly with time as the radar data suggest.

2014 ◽  
Vol 142 (4) ◽  
pp. 1609-1630 ◽  
Author(s):  
Jonathan Poterjoy ◽  
Fuqing Zhang ◽  
Yonghui Weng

Abstract Atmospheric data assimilation methods that estimate flow-dependent forecast statistics from ensembles are sensitive to sampling errors. This sensitivity is investigated in the context of vortex-scale hurricane data assimilation by cycling an ensemble Kalman filter to assimilate observations with a convection-permitting mesoscale model. In a set of numerical experiments, airborne Doppler radar observations are assimilated for Hurricane Katrina (2005) using an ensemble size that ranges from 30 to 300 members, and a varying degree of covariance inflation through relaxation to the prior. The range of ensemble sizes is shown to produce variations in posterior storm structure that persist for days in deterministic forecasts, with the most substantial differences appearing in the vortex outer-core wind and pressure fields. Ensembles with 60 or more members converge toward similar axisymmetric and asymmetric inner-core solutions by the end of the cycling, while producing qualitatively similar sample correlations between the state variables. Though covariance relaxation has little impact on model variables far from the observations, the structure of the inner-core vortex can benefit from a more optimal tuning of the relaxation coefficient. Results from this study provide insight into how sampling errors may affect the performance of an ensemble hurricane data assimilation system during cycling.


Author(s):  
Alexander J. DesRosiers ◽  
Michael M. Bell ◽  
Ting-Yu Cha

AbstractThe landfall of Hurricane Michael (2018) at category 5 intensity occurred after rapid intensification (RI) spanning much of the storm’s lifetime. Four Hurricane Hunter aircraft missions observed the RI period with tail Doppler radar (TDR). Data from each of the 14 aircraft passes through the storm were quality controlled via a combination of interactive and machine learning techniques. TDR data from each pass were synthesized using the SAMURAI variational wind retrieval technique to yield three-dimensional kinematic fields of the storm to examine inner core processes during RI. Vorticity and angular momentum increased and concentrated in the eyewall region. A vorticity budget analysis indicates the tendencies became more axisymmetric over time. In this study we focus in particular on how the eyewall vorticity tower builds vertically into the upper levels. Horizontal vorticity associated with the vertical gradient of tangential wind was tilted into the vertical by the eyewall updraft to yield a positive vertical vorticity tendency inward atop the existing vorticity tower, that is further developed locally upward and outward along the sloped eyewall through advection and stretching. Observed maintenance of thermal wind balance from a thermodynamic retrieval shows evidence of a strengthening warm core, which aided in lowering surface pressure and further contributed to the efficient intensification in the latter stages of this RI event.


2011 ◽  
Vol 68 (3) ◽  
pp. 477-494 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Jon M. Reisner

Abstract In this paper, a high-resolution simulation establishing relationships between lightning and eyewall convection during the rapid intensification phase of Rita will be highlighted. The simulation is an attempt to relate simulated lightning activity within strong convective events (CEs) found within the eyewall and general storm properties for a case from which high-fidelity lightning observations are available. Specifically, the analysis focuses on two electrically active eyewall CEs that had properties similar to events observed by the Los Alamos Sferic Array. The numerically simulated CEs were characterized by updraft speeds exceeding 10 m s−1, a relatively more frequent flash rate confined in a layer between 10 and 14 km, and a propagation speed that was about 10 m s−1 less than of the local azimuthal flow in the eyewall. Within an hour of the first CE, the simulated minimum surface pressure dropped by approximately 5 mb. Concurrent with the pulse of vertical motions was a large uptake in lightning activity. This modeled relationship between enhanced vertical motions, a noticeable pressure drop, and heightened lightning activity suggests the utility of using lightning to remotely diagnose future changes in intensity of some tropical cyclones. Furthermore, given that the model can relate lightning activity to latent heat release, this functional relationship, once validated against a derived field produced by dual-Doppler radar data, could be used in the future to initialize eyewall convection via the introduction of latent heat and/or water vapor into a hurricane model.


2008 ◽  
Vol 136 (7) ◽  
pp. 2488-2506 ◽  
Author(s):  
Qingqing Li ◽  
Yihong Duan ◽  
Hui Yu ◽  
Gang Fu

Abstract In this study, the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) is used to simulate Typhoon Rananim (2004) at high resolution (2-km grid size). The simulation agrees well with a variety of observations, especially for intensification, maintenance, landfall, and inner-core structures, including the echo-free eye, the asymmetry in eyewall convection, and the slope of the eyewall during landfall. The asymmetric feature of surface winds is also captured reasonably well by the model, as well as changes in surface winds and pressure near the storm center. The shear-induced vortex tilt and storm-relative asymmetric winds are examined to investigate how vertical shear affects the asymmetric convection in the inner-core region. The inner-core vertical shear is found to be nonunidirectional, and to induce a nonunidirectional vortex tilt. The distribution of asymmetric convection is, however, inconsistent with the typical downshear-left pattern for a deep-layer shear. Qualitative agreement is found between the divergence pattern and the storm-relative flow, with convergence (divergence) generally associated with asymmetric inflow (outflow) in the eyewall. The collocation of the inflow-induced lower-level convergence in the boundary layer and the lower troposphere and the midlevel divergence causes shallow updrafts in the western and southern parts of the eyewall, while the deep and strong upward motion in the southeastern portion of the eyewall is due to the collocation of the net convergence associated with the strong asymmetric flow in the midtroposphere and the inflow near 400 hPa and its associated divergence in the outflow layer above 400 hPa.


2015 ◽  
Vol 96 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Fuqing Zhang ◽  
Yonghui Weng

Abstract Performance in the prediction of hurricane intensity and associated hazards has been evaluated for a newly developed convection-permitting forecast system that uses ensemble data assimilation techniques to ingest high-resolution airborne radar observations from the inner core. This system performed well for three of the ten costliest Atlantic hurricanes: Ike (2008), Irene (2011), and Sandy (2012). Four to five days before these storms made landfall, the system produced good deterministic and probabilistic forecasts of not only track and intensity, but also of the spatial distributions of surface wind and rainfall. Averaged over all 102 applicable cases that have inner-core airborne Doppler radar observations during 2008–2012, the system reduced the day-2-to-day-4 intensity forecast errors by 25%–28% compared to the corresponding National Hurricane Center’s official forecasts (which have seen little or no decrease in intensity forecast errors over the past two decades). Empowered by sufficient computing resources, advances in both deterministic and probabilistic hurricane prediction will enable emergency management officials, the private sector, and the general public to make more informed decisions that minimize the losses of life and property.


2012 ◽  
Vol 69 (11) ◽  
pp. 3128-3146 ◽  
Author(s):  
Stephen R. Guimond ◽  
Jon M. Reisner

Abstract In Part I of this study, a new algorithm for retrieving the latent heat field in tropical cyclones from airborne Doppler radar was presented and fields from rapidly intensifying Hurricane Guillermo (1997) were shown. In Part II, the usefulness and relative accuracy of the retrievals is assessed by inserting the heating into realistic numerical simulations at 2-km resolution and comparing the generated wind structure to the radar analyses of Guillermo. Results show that using the latent heat retrievals as forcing produces very low intensity and structure errors (in terms of tangential wind speed errors and explained wind variance) and significantly improves simulations relative to a predictive run that is highly calibrated to the latent heat retrievals by using an ensemble Kalman filter procedure to estimate values of key model parameters. Releasing all the heating/cooling in the latent heat retrieval results in a simulation with a large positive bias in Guillermo’s intensity that motivates the need to determine the saturation state in the hurricane inner-core retrieval through a procedure similar to that described in Part I of this study. The heating retrievals accomplish high-quality structure statistics by forcing asymmetries in the wind field with the generally correct amplitude, placement, and timing. In contrast, the latent heating fields generated in the predictive simulation contain a significant bias toward large values and are concentrated in bands (rather than discrete cells) stretched around the vortex. The Doppler radar–based latent heat retrievals presented in this series of papers should prove useful for convection initialization and data assimilation to reduce errors in numerical simulations of tropical cyclones.


2014 ◽  
Vol 71 (7) ◽  
pp. 2713-2732 ◽  
Author(s):  
Jennifer C. DeHart ◽  
Robert A. Houze ◽  
Robert F. Rogers

Abstract Airborne Doppler radar data collected in tropical cyclones by National Oceanic and Atmospheric Administration WP-3D aircraft over an 8-yr period (2003–10) are used to statistically analyze the vertical structure of tropical cyclone eyewalls with reference to the deep-layer shear. Convective evolution within the inner core conforms to patterns shown by previous studies: convection initiates downshear right, intensifies downshear left, and weakens upshear. Analysis of the vertical distribution of radar reflectivity and vertical air motion indicates the development of upper-level downdrafts in conjunction with strong convection downshear left and a maximum in frequency upshear left. Intense updrafts and downdrafts both conform to the shear asymmetry pattern. While strong updrafts occur in the eyewall, intense downdrafts show far more radial variability, particularly in the upshear-left quadrant, though they concentrate along the eyewall edges. Strong updrafts are collocated with low-level inflow and upper-level outflow superimposed on the background flow. In contrast, strong downdrafts occur in association with low-level outflow and upper-level inflow.


2012 ◽  
Vol 140 (1) ◽  
pp. 77-99 ◽  
Author(s):  
Robert Rogers ◽  
Sylvie Lorsolo ◽  
Paul Reasor ◽  
John Gamache ◽  
Frank Marks

Abstract The multiscale inner-core structure of mature tropical cyclones is presented via the use of composites of airborne Doppler radar analyses. The structure of the axisymmetric vortex and the convective and turbulent-scale properties within this axisymmetric framework are shown to be consistent with many previous studies focusing on individual cases or using different airborne data sources. On the vortex scale, these structures include the primary and secondary circulations, eyewall slope, decay of the tangential wind with height, low-level inflow layer and region of enhanced outflow, radial variation of convective and stratiform reflectivity, eyewall vorticity and divergence fields, and rainband signatures in the radial wind, vertical velocity, vorticity, and divergence composite mean and variance fields. Statistics of convective-scale fields and how they vary as a function of proximity to the radius of maximum wind show that the inner eyewall edge is associated with stronger updrafts and higher reflectivity and vorticity in the mean and have broader distributions for these fields compared with the outer radii. In addition, the reflectivity shows a clear characteristic of stratiform precipitation in the outer radii and the vorticity distribution is much more positively skewed along the inner eyewall than it is in the outer radii. Composites of turbulent kinetic energy (TKE) show large values along the inner eyewall, in the hurricane boundary layer, and in a secondary region located at about 2–3 times the radius of maximum wind. This secondary peak in TKE is also consistent with a peak in divergence and in the variability of vorticity, and they suggest the presence of rainbands at this radial band.


2009 ◽  
Vol 137 (9) ◽  
pp. 2758-2777 ◽  
Author(s):  
Qingnong Xiao ◽  
Xiaoyan Zhang ◽  
Christopher Davis ◽  
John Tuttle ◽  
Greg Holland ◽  
...  

Abstract Initialization of the hurricane vortex in weather prediction models is vital to intensity forecasts out to at least 48 h. Airborne Doppler radar (ADR) data have sufficiently high horizontal and vertical resolution to resolve the hurricane vortex and its imbedded structures but have not been extensively used in hurricane initialization. Using the Weather Research and Forecasting (WRF) three-dimensional variational data assimilation (3DVAR) system, the ADR data are assimilated to recover the hurricane vortex dynamic and thermodynamic structures at the WRF model initial time. The impact of the ADR data on three hurricanes, Jeanne (2004), Katrina (2005) and Rita (2005), are examined during their rapid intensification and subsequent weakening periods before landfall. With the ADR wind data assimilated, the three-dimensional winds in the hurricane vortex become stronger and the maximum 10-m winds agree better with independent estimates from best-track data than without ADR data assimilation. Through the multivariate incremental structure in WRF 3DVAR analysis, the central sea level pressures (CSLPs) for the three hurricanes are lower in response to the stronger vortex at initialization. The size and inner-core structure of each vortex are adjusted closer to observations of these attributes. Addition of reflectivity data in assimilation produces cloud water and rainwater analyses in the initial vortex. The temperature and moisture are also better represented in the hurricane initialization. Forty-eight-hour forecasts are conducted to evaluate the impact of ADR data using the Advanced Research Hurricane WRF (AHW), a derivative of the Advanced Research WRF (ARW) model. Assimilation of ADR data improves the hurricane-intensity forecasts. Vortex asymmetries, size, and rainbands are also simulated better. Hurricane initialization with ADR data is quite promising toward reducing intensity forecast errors at modest computational expense.


Sign in / Sign up

Export Citation Format

Share Document