scholarly journals Case Study of a Developing African Easterly Wave during NAMMA: An Energetic Point of View

2009 ◽  
Vol 66 (10) ◽  
pp. 2991-3020 ◽  
Author(s):  
Joël Arnault ◽  
Frank Roux

Abstract The West African perturbation that subsequently evolved into Hurricane Helene (2006) during NASA’s African Monsoon Multidisciplinary Analysis (NAMMA), 15 August–14 September 2006, and AMMA’s third special observing period (SOP-3), 15–29 September 2006, has been simulated with the nonhydrostatic Méso-NH model using parameterized convection. The simulated disturbance evolved over West Africa and the adjacent eastern tropical Atlantic through interactions between different processes at the convective scale, mesoscale, and synoptic scale. The aim of this paper is to quantify the energetics of the simulated disturbance. A set of energy equations is first developed in the hydrostatic case to solve the limitations of Lorenz’s analysis when applied to a finite domain. It is shown that this approach is also valid in the compressible and in the anelastic case in order to apply it to the Méso-NH results. Application to the simulated pre-Helene disturbance allows one to determine the most important terms in these equations. These simplifications are taken into account to derive an energy cycle including barotropic and baroclinic conversions of eddy kinetic energy. The development of the simulated system was found to result from barotropic–baroclinic growth over West Africa and barotropic growth over the tropical eastern Atlantic. It is suggested that most of these energy conversions were the result of an adjustment of the wind field in response to the pressure decrease, presumably caused by convective activity.

2012 ◽  
Vol 140 (4) ◽  
pp. 1108-1124 ◽  
Author(s):  
Michael J. Ventrice ◽  
Christopher D. Thorncroft ◽  
Matthew A. Janiga

This paper explores a three-way interaction between an African easterly wave (AEW), the diurnal cycle of convection over the Guinea Highlands (GHs), and a convectively coupled atmospheric equatorial Kelvin wave (CCKW). These interactions resulted in the genesis of Tropical Storm Debby over the eastern tropical Atlantic during late August 2006. The diurnal cycle of convection downstream of the GHs during the month of August is explored. Convection associated with the coherent diurnal cycle is observed off the coast of West Africa during the morning. Later, convection initiates over and downstream of the GHs during the afternoon. These convective features were pronounced during the passage of the pre-Debby AEW. The superposition between the convectively active phase of a strong CCKW and the pre-Debby AEW occurred shortly after merging with the diurnally varying convection downstream of the GHs. The CCKW–AEW interaction preceded tropical cyclogenesis by 18 h. The CCKW provided a favorable environment for deep convection. An analysis of high-amplitude CCKWs over the tropical Atlantic and West Africa during the Northern Hemisphere boreal summer (1979–2009) highlights a robust relationship between CCKWs and the frequency of tropical cyclogenesis. Tropical cyclogenesis is found to be less frequent immediately prior to the passage of the convectively active phase of the CCKW, more frequent during the passage, and most frequent just after the passage.


2010 ◽  
Vol 67 (1) ◽  
pp. 3-25 ◽  
Author(s):  
Robert Cifelli ◽  
Timothy Lang ◽  
Steven A. Rutledge ◽  
Nick Guy ◽  
Edward J. Zipser ◽  
...  

Abstract The evolution of an African easterly wave is described using ground-based radar and ancillary datasets from three locations in West Africa: Niamey, Niger (continental), Dakar, Senegal (coastal), and Praia, Republic of Cape Verde (oceanic). The data were collected during the combined African Monsoon Multidisciplinary Analyses (AMMA) and NASA AMMA (NAMMA) campaigns in August–September 2006. Two precipitation events originated within the wave circulation and propagated with the wave across West Africa. Mesoscale convective systems (MCSs) associated with these events were identified at all three sites ahead of, within, and behind the 700-mb wave trough. An additional propagating event was indentified that originated east of the wave and moved through the wave circulation. The MCS activity associated with this event did not show any appreciable change resulting from its interaction with the wave. The MCS characteristics at each site were different, likely due to a combination of life cycle effects and changes in relative phasing between the propagating systems and the position of low-level convergence and thermodynamic instability associated with the wave. At the ocean and coastal sites, the most intense convection occurred ahead of the wave trough where both high CAPE and low-level convergence were concentrated. At the continental site, convection was relatively weak owing to the fact that the wave dynamics and thermodynamics were not in sync when the systems passed through Niamey. The only apparent effect of the wave on MCS activity at the continental site was to extend the period of precipitation activity during one of the events that passed through coincident with the 700-mb wave trough. Convective organization at the land sites was primarily in the form of squall lines and linear MCSs oriented perpendicular to the low-level shear. The organization at the oceanic site was more complicated, transitioning from linear MCSs to widespread stratiform cloud with embedded convection. The precipitation activity was also much longer lived at the oceanic site due to the wave becoming nearly stationary near the Cape Verdes, providing an environment supportive of deep convection for an extended period.


2010 ◽  
Vol 138 (10) ◽  
pp. 3721-3739 ◽  
Author(s):  
Stephen D. Nicholls ◽  
Karen I. Mohr

Abstract The local- and regional-scale environments associated with intense convective systems in West Africa during 2003 were diagnosed from soundings, operational analysis, and space-based datasets. Convective system cases were identified from the Tropical Rainfall Measuring Mission (TRMM) microwave imagery and classified by the system minimum 85-GHz brightness temperature and the estimated elapsed time of propagation from terrain greater than 500 m. The speed of the midlevel jet, the magnitude of the low-level shear, and the surface equivalent potential temperature θe were greater for the intense cases compared to the nonintense cases, although the differences between the means tended to be small: less than 3 K for surface θe and less than 2 × 10−3 s−1 for low-level wind shear. Hypothesis testing of a series of commonly used intensity prediction metrics resulted in significant results only for low-level metrics such as convective available potential energy and not for any of the mid- or upper-level metrics such as the 700-hPa θe. None of the environmental variables or intensity metrics by themselves or in combination appeared to be reliable direct predictors of intensity. In the regional-scale analysis, the majority of intense convective systems occurred in the surface baroclinic zone where surface θe exceeded 344 K and the 700-hPa zonal wind speeds were less than −6 m s−1. Fewer intense cases compared to nonintense cases were associated with African easterly wave troughs. Fewer than 25% of these cases occurred in environments with detectable Saharan dust loads, and the results for intense and nonintense cases were similar. Although the discrimination between the intense and nonintense environments was narrow, the results were robust and consistent with the seasonal movement of the West African monsoon, regional differences in topography, and African easterly wave energetics.


2021 ◽  
Vol 11 (9) ◽  
pp. 4045
Author(s):  
Amilcar Duque-Prata ◽  
Carlos Serpa ◽  
Pedro J. S. B. Caridade

The photodegradation mechanism of 1-phenyl-4-allyl-tetrazol-5-one has been studied using (time-dependent) density functional theory with the M06-HF, B3LYP, and PBE0 functionals and the VDZ basis set. All calculations have been carried out using the polarizable continuum model to simulate the solvent effects of methanol. The reaction pathway evolution on the triplet state has been characterised to validate a previously postulated experimental-based mechanism. The transition states and minimums have been initially located by local scanning in partial constrained optimisation, followed by a fully relaxed search procedure. The UV spectra has shown to be better described with PBE0 functional when compared with the experimental results, having the M06-HF a shift of 40 nm. From the energetic point of view, the postulated mechanism has been validated in this work showing a concerted photoextrusion of the N2 molecule. The intramolecular proton transfer occurs at a later stage of the mechanism after cyclization of the allyl group on a triplet biradical intermediate. The photoproduct observed experimentally, a pyrimidinone, has been characterised. The infrared spectroscopic reaction profile has also been proposed.


2018 ◽  
Vol 52 (9-10) ◽  
pp. 5567-5584
Author(s):  
Allison Lynn Brannan ◽  
Elinor R. Martin

2021 ◽  
Author(s):  
Maël Jeulin ◽  
Olivier Cahuc ◽  
Philippe Darnis ◽  
Raynald Laheurte

Abstract Most of the cutting models developed in the literature attest only to the presence of cutting forces in the balance of mechanical actions resulting from cutting. However, several studies have highlighted the presence of cutting moments during machining, and particularly 3D cutting in milling. The objective of this paper is to characterise phenomena associated with cutting moments by performing experimental mechanistic modelling in 3D cutting. For this purpose, several modelling factors will be investigated, such as the 3D cutting reference frame, the undeformed chip section, the cutting parameters, the cutting zone, etc. The predictive model of this study proves to be relatively efficient for an experimental model and allows a global prediction of cutting moments in milling. Furthermore, beyond the aspect of stress fields in the workpiece caused by cutting moments, this paper gives perspectives from an energetic point of view for which the share of moments in the energy balance could be substantial for monobloc tools.


2016 ◽  
Vol 823 ◽  
pp. 75-78
Author(s):  
Doru Groza ◽  
Dan Mihai Dogariu

This study aims to validate the use of R744 for a resonant twin piston compressor for domestic applications. The vapor-compression refrigeration is the most commonly approached method for cooling household appliances such as refrigerators and air conditioning systems. The R134a refrigerant is one of the most suitable refrigerants from an energetic point of view. R744 (CO2) compressors are less efficient, but the fact that the R134a raises serious environmental issues pushes commercial trend towards the usage of R744 [1]-[3]. Use of R744 in household appliances is currently an open topic and no company has switched yet to the environmental-friendly alternative. In this paper the fill efficiency will be simulated in order to validate if a conventional compressor such as the opposite twin piston compressor is capable of filling with refrigerant when operating at a 50Hz frequency. Such a validation can enable further investigations regarding the replacement of R134a with R744.


Author(s):  
Pandeli Borodani ◽  
Davide Colombo ◽  
Marco Forestello ◽  
Patrizio Turco ◽  
Riccardo Morselli

The plant under control is the hydraulic circuit arranged by CNH in a prototype agriculture tractor of medium segment, where instead of the conventional main hydraulic pump, a new device electronically piloted, is installed. The main purpose is basically to obtain some advantages according to the energetic point of view, by means of an appropriate control structure, managing the electronic variable displacement pump. The frontier of the new systems requires the employment of the advanced control techniques, in order to assure the levels of precision, reliability, robustness demanded from systems. The control design methodology employed in the present case is based on robust H∞ optimization techniques, where robust stability properties are guaranteed in presence of unaccountable dynamics and other destabilizing factors. The effectiveness of the proposed control approach is tested on the demonstrative tractor realized from the CNH Agriculture at Modena plants, in all real conditions.


2019 ◽  
Vol 85 ◽  
pp. 07008 ◽  
Author(s):  
Gabriela Ionescu ◽  
Cora Bulmău

The present research proposes two scenarios for the biomass conversion into valuable products within the integrated management of bio-resources. The scenarios have been developed considering: the biomass availability, material and by-products characteristics and the comprehensive combination of the primary technologies used for the conversion of the biomass mixtures into energy. In scenario 1 the biomass waste valorisation is made via integrated pyrolysis and combustion treatment, while in scenario 2 the biomass conversion in done considering the integration of the pyrolysis, gasification and combustion treatments into the conversion chain. The results revealed that all analysed scenarios purposed are self-independent from the energetic point of view.


Sign in / Sign up

Export Citation Format

Share Document