scholarly journals Atlantic Tropical Cyclogenesis: A Three-Way Interaction between an African Easterly Wave, Diurnally Varying Convection, and a Convectively Coupled Atmospheric Kelvin Wave

2012 ◽  
Vol 140 (4) ◽  
pp. 1108-1124 ◽  
Author(s):  
Michael J. Ventrice ◽  
Christopher D. Thorncroft ◽  
Matthew A. Janiga

This paper explores a three-way interaction between an African easterly wave (AEW), the diurnal cycle of convection over the Guinea Highlands (GHs), and a convectively coupled atmospheric equatorial Kelvin wave (CCKW). These interactions resulted in the genesis of Tropical Storm Debby over the eastern tropical Atlantic during late August 2006. The diurnal cycle of convection downstream of the GHs during the month of August is explored. Convection associated with the coherent diurnal cycle is observed off the coast of West Africa during the morning. Later, convection initiates over and downstream of the GHs during the afternoon. These convective features were pronounced during the passage of the pre-Debby AEW. The superposition between the convectively active phase of a strong CCKW and the pre-Debby AEW occurred shortly after merging with the diurnally varying convection downstream of the GHs. The CCKW–AEW interaction preceded tropical cyclogenesis by 18 h. The CCKW provided a favorable environment for deep convection. An analysis of high-amplitude CCKWs over the tropical Atlantic and West Africa during the Northern Hemisphere boreal summer (1979–2009) highlights a robust relationship between CCKWs and the frequency of tropical cyclogenesis. Tropical cyclogenesis is found to be less frequent immediately prior to the passage of the convectively active phase of the CCKW, more frequent during the passage, and most frequent just after the passage.

2013 ◽  
Vol 141 (6) ◽  
pp. 1910-1924 ◽  
Author(s):  
Michael J. Ventrice ◽  
Chris D. Thorncroft

Abstract The role of convectively coupled atmospheric Kelvin waves (CCKWs) on African easterly wave (AEW) activity is explored over tropical Africa during boreal summer. Examination of the pre-Alberto AEW in 2000 highlights the observation that the convective trigger for the initiation of the AEW was generated by a strong CCKW and that the subsequent intensification of the AEW at the West African coast was associated with a second CCKW. Composite analysis shows that, generally, AEW activity increases during and after the passage of the convectively active phase of strong CCKWs. The increase in AEW activity is consistent with convective triggering at the leading edge of the convective phase of the CCKW. This convective triggering occurs in a region where the background low-level easterly vertical wind shear is increased by the CCKW. As the AEW propagates westward through the convectively active phase of the CCKW, it can develop in an environment favorable for convection. It is also shown that this phase of the CCKW is characterized by enhanced meridional vorticity gradients in the core of the African easterly jet suggesting that enhanced mixed barotropic–baroclinic growth may also be responsible for enhanced AEW activity there.


2011 ◽  
Vol 139 (9) ◽  
pp. 2704-2722 ◽  
Author(s):  
Michael J. Ventrice ◽  
Chris D. Thorncroft ◽  
Paul E. Roundy

The influence of the Madden–Julian oscillation (MJO) over tropical Africa and Atlantic is explored during the Northern Hemisphere summer months. The MJO is assessed by using real-time multivariate MJO (RMM) indices. These indices divide the active convective signal of the MJO into 8 phases. Convection associated with the MJO is enhanced over tropical Africa during RMM phases 8, 1, and 2. Convection becomes suppressed over tropical Africa during the subsequent RMM phases (phases 3–7). African convective signals are associated with westward-propagating equatorial Rossby waves. The MJO modulates African easterly wave (AEW) activity. AEW activity is locally enhanced during RMM phases 1–3 and suppressed during RMM phases 6–8. Enhanced AEW activity occurs during periods of enhanced convection over tropical Africa, consistent with stronger or more frequent triggering of AEWs as well as more growth associated with latent heat release. Enhanced AEW activity occurs during the low-level westerly wind phase of the MJO, which increases the cyclonic shear on the equatorward side of the AEJ, increasing its instability. Atlantic tropical cyclogenesis frequency varies coherently with the MJO. RMM phases 1–3 show the greatest frequency of tropical cyclogenesis events whereas phases 7 and 8 show the least. RMM phase 2 is also the most likely phase to be associated with a train of three or more tropical cyclones over the tropical Atlantic. This observed evolution of tropical cyclogenesis frequency varies coherently with variations in AEW activity and the large-scale environment.


2010 ◽  
Vol 67 (1) ◽  
pp. 3-25 ◽  
Author(s):  
Robert Cifelli ◽  
Timothy Lang ◽  
Steven A. Rutledge ◽  
Nick Guy ◽  
Edward J. Zipser ◽  
...  

Abstract The evolution of an African easterly wave is described using ground-based radar and ancillary datasets from three locations in West Africa: Niamey, Niger (continental), Dakar, Senegal (coastal), and Praia, Republic of Cape Verde (oceanic). The data were collected during the combined African Monsoon Multidisciplinary Analyses (AMMA) and NASA AMMA (NAMMA) campaigns in August–September 2006. Two precipitation events originated within the wave circulation and propagated with the wave across West Africa. Mesoscale convective systems (MCSs) associated with these events were identified at all three sites ahead of, within, and behind the 700-mb wave trough. An additional propagating event was indentified that originated east of the wave and moved through the wave circulation. The MCS activity associated with this event did not show any appreciable change resulting from its interaction with the wave. The MCS characteristics at each site were different, likely due to a combination of life cycle effects and changes in relative phasing between the propagating systems and the position of low-level convergence and thermodynamic instability associated with the wave. At the ocean and coastal sites, the most intense convection occurred ahead of the wave trough where both high CAPE and low-level convergence were concentrated. At the continental site, convection was relatively weak owing to the fact that the wave dynamics and thermodynamics were not in sync when the systems passed through Niamey. The only apparent effect of the wave on MCS activity at the continental site was to extend the period of precipitation activity during one of the events that passed through coincident with the 700-mb wave trough. Convective organization at the land sites was primarily in the form of squall lines and linear MCSs oriented perpendicular to the low-level shear. The organization at the oceanic site was more complicated, transitioning from linear MCSs to widespread stratiform cloud with embedded convection. The precipitation activity was also much longer lived at the oceanic site due to the wave becoming nearly stationary near the Cape Verdes, providing an environment supportive of deep convection for an extended period.


2012 ◽  
Vol 140 (7) ◽  
pp. 2198-2214 ◽  
Author(s):  
Michael J. Ventrice ◽  
Christopher D. Thorncroft ◽  
Carl J. Schreck

Abstract High-amplitude convectively coupled equatorial atmospheric Kelvin waves (CCKWs) are explored over the tropical Atlantic during the boreal summer (1989–2009). Focus is given to the atmospheric environmental conditions that are important for tropical cyclogenesis. CCKWs are characterized by deep westerly vertical wind shear to the east of its convectively active phase and easterly vertical wind shear to the west of it. This dynamical signature increases vertical wind shear over the western tropical Atlantic ahead of the convectively active phase, and reduces vertical wind shear after its passage. The opposite is true over the eastern tropical Atlantic where the climatological vertical wind shear is easterly. Positive total column water vapor (TCWV) anomalies progress eastward with the convectively active phase of the CCKW, whereas negative TCWV anomalies progress eastward with the convectively suppressed phase. During the passage of the convectively active phase of the CCKW, a zonally oriented strip of low-level cyclonic relative vorticity is generated over the tropical Atlantic. Two days later, this strip becomes more wavelike and moves back toward the west. This signature resembles a train of westward-moving easterly waves and suggests CCKWs may influence such events. Strong CCKWs over the tropical Atlantic tend to occur during the decay of the active convection associated with the Madden–Julian oscillation over the Pacific. This relationship could be used to provide better long-range forecasts of tropical convective patterns and Atlantic tropical cyclogenesis.


2019 ◽  
Vol 76 (11) ◽  
pp. 3633-3654 ◽  
Author(s):  
Michael B. Natoli ◽  
Eric D. Maloney

Abstract Precipitation in the region surrounding the South China Sea over land and coastal waters exhibits a strong diurnal cycle associated with a land–sea temperature contrast that drives a sea-breeze circulation. The boreal summer intraseasonal oscillation (BSISO) is an important modulator of diurnal precipitation patterns, an understanding of which is a primary goal of the field campaign Propagation of Intraseasonal Tropical Oscillations (PISTON). Using 21 years of CMORPH precipitation for Luzon Island in the northern Philippines, it is shown that the diurnal cycle amplitude is generally maximized over land roughly 1 week before the arrival of the broader oceanic convective envelope associated with the BSISO. A strong diurnal cycle in coastal waters is observed in the transition from the inactive to active phase, associated with offshore propagation of the diurnal cycle. The diurnal cycle amplitude is in phase with daily mean precipitation over Mindanao but is nearly out of phase over Luzon. The BSISO influence on the diurnal cycle on the eastern side of topography is nearly opposite to that on the western side. Using wind, moisture, and radiation products from the ERA5 reanalysis, it is proposed that the enhanced diurnal cycle west of the mountains during BSISO suppressed phases is related to increased insolation and weaker prevailing onshore winds that promote a stronger sea-breeze circulation when compared with the May–October mean state. Offshore propagation is suppressed until ambient midlevel moisture increases over the surrounding oceans during the transition to the active BSISO phase. In BSISO enhanced phases, strong low-level winds and increased cloudiness suppress the sea-breeze circulation.


2015 ◽  
Vol 143 (10) ◽  
pp. 3996-4011 ◽  
Author(s):  
Carl J. Schreck

Abstract Convectively coupled atmospheric Kelvin waves are among the most prominent sources of synoptic-scale rainfall variability in the tropics, but large uncertainties surround their role in tropical cyclogenesis. This study identifies the modulation of tropical cyclones relative to the passage of a Kelvin wave’s peak rainfall (i.e., its crest) in each basin. Tropical cyclogenesis is generally inhibited for 3 days before the crest and enhanced for 3 days afterward. Composites of storms forming in the most favorable lags illustrate the dynamical impacts of the waves. In most basins, the tropical cyclone actually forms during the convectively suppressed phase of the wave. The 850-hPa equatorial westerly anomalies provide the cyclonic vorticity for the nascent storm, and 200-hPa easterly anomalies enhance the outflow. The wind anomalies persist at both levels longer than the Kelvin wave’s period and are often related to the Madden–Julian oscillation (MJO). The onset of these wind anomalies occurs with the Kelvin wave passage, while the MJO apparently establishes their duration. Many of the composites also show evidence of an easterly wave from which the tropical cyclone develops. The composite easterly wave amplifies or even initiates within the Kelvin wave crest. These results show the importance of Kelvin waves interacting with the MJO and easterly waves during tropical cyclogenesis. Given that Kelvin waves often circumnavigate the globe, these results show promise for long-range forecasting of tropical cyclogenesis in all basins.


2010 ◽  
Vol 10 (22) ◽  
pp. 10803-10827 ◽  
Author(s):  
M. T. Montgomery ◽  
Z. Wang ◽  
T. J. Dunkerton

Abstract. Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from within the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm". Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the Kurihara and Tuleya problem examining the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km), intermediate (9 km) and high resolution (3.1 km) simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of a rotationally dominant region with minimal strain/shear deformation near the center of the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together. Implications of these findings are discussed in relation to an upcoming field experiment for the most active period of the Atlantic hurricane season in 2010 that is to be conducted collaboratively between the National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation (NSF), and the National Aeronautics and Space Adminstration (NASA).


Author(s):  
Tobias Becker ◽  
Cathy Hohenegger

AbstractIn this study, we estimate bulk entrainment rates for deep convection in convection-permitting simulations, conducted over the tropical Atlantic Ocean, encompassing parts of Africa and South America. We find that, even though entrainment rates decrease with height in all regions, they are, when averaging between 600 and 800 hPa, generally higher over land than over ocean. This is so because, over Amazonia, shallow convection causes an increase of bulk entrainment rates at lower levels and because, over West Africa, where entrainment rates are highest, convection is organized in squall lines. These squall lines are associated with strong mesoscale convergence, causing more intense updrafts and stronger turbulence generation in the vicinity of updrafts, increasing the entrainment rates. With the exception of West Africa, entrainment rates differ less across regions than across different environments within the regions. In contrast to what is usually assumed in convective parameterizations, entrainment rates increase with environmental humidity. Moreover, over ocean, they increase with static stability, while over land, they decrease. In addition, confirming the results of a recent idealized study, entrainment rates increase with convective aggregation, except in regions dominated by squall lines, like over West Africa.


2011 ◽  
Vol 139 (9) ◽  
pp. 2832-2853 ◽  
Author(s):  
Arlene G. Laing ◽  
Richard E. Carbone ◽  
Vincenzo Levizzani

Long-term statistics of organized convection are vital to improved understanding of the hydrologic cycle at various scales. Satellite observations are used to understand the timing, duration, and frequency of deep convection in equatorial Africa, a region with some of the most intense thunderstorms. Yet little has been published about the propagation characteristics of mesoscale convection in that region. Diurnal, subseasonal, and seasonal cycles of cold cloud (proxy for convective precipitation) are examined on a continental scale. Organized deep convection consists of coherent structures that are characteristic of systems propagating under a broad range of atmospheric conditions. Convection is triggered by heating of elevated terrain, sea/land breezes, and lake breezes. Coherent episodes of convection result from regeneration of convection through multiple diurnal cycles while propagating westward. They have an average 17.6-h duration and 673-km span; most have zonal phase speeds of 8–16 m s−1. Propagating convection occurs in the presence of moderate low-level shear that is associated with the southwesterly monsoonal flow and midlevel easterly jets. Convection is also modulated by eastward-moving equatorially trapped Kelvin waves, which have phase speeds of 12–22 m s−1 over equatorial Africa. Westward propagation of mesoscale convection is interrupted by the dry phase of convectively coupled Kelvin waves. During the wet phase, daily initiation and westward propagation continues within the Kelvin wave and the cold cloud shields are larger. Mesoscale convection is more widespread during the active phase of the Madden–Julian oscillation (MJO) but with limited westward propagation. The study highlights multiscale interaction as a major source of variability in convective precipitation during the critical rainy seasons in equatorial Africa.


2018 ◽  
Vol 146 (9) ◽  
pp. 3079-3096 ◽  
Author(s):  
Alan Brammer ◽  
Chris D. Thorncroft ◽  
Jason P. Dunion

Abstract A strong African easterly wave (AEW) left the West African coast in early September 2014 and operational global numerical forecasts suggested a potential for rapid tropical cyclogenesis of this disturbance in the eastern Atlantic, despite the presence of a large region of dry air northwest of the disturbance. Analysis and in situ observations show that after leaving the coast, the closed circulation associated with the AEW trough was not well aligned vertically, and therefore, low-level or midlevel dry air was advected below or above, respectively, areas of closed circulation. GPS dropwindsonde observations highlight the dry air undercutting the midlevel recirculation region in the southwestern quadrant. This advection of dry air constrains the spatial extent of deep convection within the AEW trough, leading to the vortex decaying. As the column continues to be displaced horizontally, losing vertical alignment, this enables increased horizontal advection of dry air into the system further limiting convective activity. Ensemble forecasts indicate that short-term errors in precipitation rate and vorticity generation can lead to an over intensified and well-aligned vortex, which then interacts less with the unfavorable environment, allowing for further convection and intensification. The stronger vortex provides more favorable conditions for precipitation through a more vertically coherent closed circulation and thus a positive feedback loop is initiated. The short-term forecasts of precipitation were shown to be sensitive to lower-tropospheric moisture anomalies around the AEW trough through ensemble sensitivity analysis from Global Ensemble Forecast System real-time forecasts.


Sign in / Sign up

Export Citation Format

Share Document