scholarly journals Influence of the 26°N RAPID–MOCHA Array and Florida Current Cable Observations on the ECCO–GODAE State Estimate

2010 ◽  
Vol 40 (5) ◽  
pp. 865-879 ◽  
Author(s):  
Johanna Baehr

Abstract The incorporation of local temperature and salinity observations from the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA), as well as the cable estimates of volume transport in the Florida Current (FC), is tested in the Estimating the Circulation and Climate of the Ocean–Global Ocean Data Assimilation Experiment (ECCO–GODAE) estimation system for their impact on the estimate of the meridional overturning circulation (MOC) and the meridional heat transport in the Atlantic. An experimental setup covering the first deployment period of RAPID–MOCHA from March 2004 to March 2005 is used to test different strategies for incorporating these datasets. Incorporating both monthly means of the FC data and monthly means of the RAPID–MOCHA temperature and salinity measurements at the eastern and western boundaries of the basin as an observational constraint in a 1-yr experiment results in an adjustment to the reference estimate, which does not include these datasets, of approximately 1 Sv (1 Sv ≡ 106 m3 s−1) in the MOC at 26°N and the adjacent latitudes (approximately ±15°), with a larger northward branch of the MOC above 1000 m, compensated by a larger flow in the southward branch of the MOC between approximately 2000 and 3000 m. The meridional heat transport from 26°N to near 40°N is approximately 0.05 PW larger than in the reference experiment.

2008 ◽  
Vol 38 (12) ◽  
pp. 2739-2754 ◽  
Author(s):  
Florian Sévellec ◽  
Thierry Huck ◽  
Mahdi Ben Jelloul ◽  
Nicolas Grima ◽  
Jérôme Vialard ◽  
...  

Abstract Recent observations and modeling studies have stressed the influence of surface salinity perturbations on the North Atlantic circulation over the past few decades. As a step toward the estimation of the sensitivity of the thermohaline circulation to salinity anomalies, optimal initial surface salinity perturbations are computed and described for a realistic mean state of a global ocean general circulation model [Océan Parallélisé (OPA)]; optimality is defined successively with respect to the meridional overturning circulation intensity and the meridional heat transport maximum. Although the system is asymptotically stable, the nonnormality of the dynamics is able to produce a transient growth through an initial stimulation. Optimal perturbations are calculated subject to three constraints: the perturbation applies to surface salinity; the perturbation conserves the global salt content; and the perturbation is normalized, to remove the degeneracy in the linear maximization problem. Maximization using Lagrangian multipliers leads to explicit solutions (rather than eigenvalue problems), involving the integration of the model adjoint for each value to maximize. The most efficient transient growth for the intensity of the meridional overturning circulation appears for a delay of 10.5 yr after the perturbation by the optimal surface salinity anomaly. This optimal growth is induced by an initial anomaly located north of 50°N. In the same way, the most efficient transient growth for the intensity of the meridional heat transport appears for a shorter delay of 2.2 yr after the perturbation by the optimal surface salinity anomaly. This initial optimal perturbation corresponds to a zonal salinity gradient around 24°N. The optimal surface salinity perturbations studied herein yield upper bounds on the intensity of the response in meridional overturning circulation and meridional heat transport. Using typical amplitudes of the Great Salinity Anomalies, the upper bounds for the associated variability are 0.8 Sv (1 Sv ≡ 106 m3 s−1) (11% of the mean circulation) and 0.03 PW (5% of the mean circulation), respectively.


2015 ◽  
Vol 45 (7) ◽  
pp. 1929-1946 ◽  
Author(s):  
Sandy Grégorio ◽  
Thierry Penduff ◽  
Guillaume Sérazin ◽  
Jean-Marc Molines ◽  
Bernard Barnier ◽  
...  

AbstractThe low-frequency variability of the Atlantic meridional overturning circulation (AMOC) is investigated from 2, ¼°, and ° global ocean–sea ice simulations, with a specific focus on its internally generated (i.e., “intrinsic”) component. A 327-yr climatological ¼° simulation, driven by a repeated seasonal cycle (i.e., a forcing devoid of interannual time scales), is shown to spontaneously generate a significant fraction R of the interannual-to-decadal AMOC variance obtained in a 50-yr “fully forced” hindcast (with reanalyzed atmospheric forcing including interannual time scales). This intrinsic variance fraction R slightly depends on whether AMOCs are computed in geopotential or density coordinates, and on the period considered in the climatological simulation, but the following features are quite robust when mesoscale eddies are simulated (at both ¼° and ° resolutions); R barely exceeds 5%–10% in the subpolar gyre but reaches 30%–50% at 34°S, up to 20%–40% near 25°N, and 40%–60% near the Gulf Stream. About 25% of the meridional heat transport interannual variability is attributed to intrinsic processes at 34°S and near the Gulf Stream. Fourier and wavelet spectra, built from the 327-yr ¼° climatological simulation, further indicate that spectral peaks of intrinsic AMOC variability (i) are found at specific frequencies ranging from interannual to multidecadal, (ii) often extend over the whole meridional scale of gyres, (iii) stochastically change throughout these 327 yr, and (iv) sometimes match the spectral peaks found in the fully forced hindcast in the North Atlantic. Intrinsic AMOC variability is also detected at multidecadal time scales, with a marked meridional coherence between 35°S and 25°N (15–30 yr periods) and throughout the whole basin (50–90-yr periods).


2020 ◽  
Author(s):  
Dorotea Iovino ◽  
Malcolm J. Roberts ◽  
Laura C. Jackson ◽  
Christopher D. Roberts ◽  
Virna Meccia ◽  
...  

<p>The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the three-dimensional ocean circulation that transports warm and salty water northward, and exports cold and dense water from the Arctic southward.</p><p>The simulated AMOC in Coupled Model Intercomparison Project models (both coupled and ocean-only) has been studied extensively. However, correctly simulating the AMOC with these models remains a challenge for the climate modelling community. One model aspect that can affect the AMOC representation is the model resolution (i.e. grid spacing).</p><p>Here, we examine key aspects of the North Atlantic Ocean circulation using a multi-model, multi-resolution ensemble based on the CMIP6 HighResMIP coupled experiments. The AMOC and associated heat transport tend to become stronger as model resolution increases, particularly when the ocean resolution changes from non-eddying to eddy-present and eddy-rich. However, the circulation remains too shallow compared to observations for most models, and this, together with temperature biases, cause the northward heat transport to be too low for a given overturning strength.</p><p>In the period 2015-2050, the overturning circulation tends to decline more rapidly in the higher resolution models by more than 20% compared to the control state, which is related to both themean state and to the subpolar gyre contribution to deep water formation. The main part of the decline comes from the Florida Current component of the circulation.</p>


2013 ◽  
Vol 26 (12) ◽  
pp. 4335-4356 ◽  
Author(s):  
Rym Msadek ◽  
William E. Johns ◽  
Stephen G. Yeager ◽  
Gokhan Danabasoglu ◽  
Thomas L. Delworth ◽  
...  

Abstract The link at 26.5°N between the Atlantic meridional heat transport (MHT) and the Atlantic meridional overturning circulation (MOC) is investigated in two climate models, the GFDL Climate Model version 2.1 (CM2.1) and the NCAR Community Climate System Model version 4 (CCSM4), and compared with the recent observational estimates from the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) array. Despite a stronger-than-observed MOC magnitude, both models underestimate the mean MHT at 26.5°N because of an overly diffuse thermocline. Biases result from errors in both overturning and gyre components of the MHT. The observed linear relationship between MHT and MOC at 26.5°N is realistically simulated by the two models and is mainly due to the overturning component of the MHT. Fluctuations in overturning MHT are dominated by Ekman transport variability in CM2.1 and CCSM4, whereas baroclinic geostrophic transport variability plays a larger role in RAPID. CCSM4, which has a parameterization of Nordic Sea overflows and thus a more realistic North Atlantic Deep Water (NADW) penetration, shows smaller biases in the overturning heat transport than CM2.1 owing to deeper NADW at colder temperatures. The horizontal gyre heat transport and its sensitivity to the MOC are poorly represented in both models. The wind-driven gyre heat transport is northward in observations at 26.5°N, whereas it is weakly southward in both models, reducing the total MHT. This study emphasizes model biases that are responsible for the too-weak MHT, particularly at the western boundary. The use of direct MHT observations through RAPID allows for identification of the source of the too-weak MHT in the two models, a bias shared by a number of Coupled Model Intercomparison Project phase 5 (CMIP5) coupled models.


2018 ◽  
Vol 31 (12) ◽  
pp. 4727-4743 ◽  
Author(s):  
Wei Liu ◽  
Jian Lu ◽  
Shang-Ping Xie ◽  
Alexey Fedorov

Climate models show that most of the anthropogenic heat resulting from increased atmospheric CO2 enters the Southern Ocean near 60°S and is stored around 45°S. This heat is transported to the ocean interior by the meridional overturning circulation (MOC) with wind changes playing an important role in the process. To isolate and quantify the latter effect, we apply an overriding technique to a climate model and decompose the total ocean response to CO2 increase into two major components: one due to wind changes and the other due to direct CO2 effect. We find that the poleward-intensified zonal surface winds tend to shift and strengthen the ocean Deacon cell and hence the residual MOC, leading to anomalous divergence of ocean meridional heat transport around 60°S coupled to a surface heat flux increase. In contrast, at 45°S we see anomalous convergence of ocean heat transport and heat loss at the surface. As a result, the wind-induced ocean heat storage (OHS) peaks at 46°S at a rate of 0.07 ZJ yr−1 (° lat)−1 (1 ZJ = 1021 J), contributing 20% to the total OHS maximum. The direct CO2 effect, on the other hand, very slightly alters the residual MOC but primarily warms the ocean. It induces a small but nonnegligible change in eddy heat transport and causes OHS to peak at 42°S at a rate of 0.30 ZJ yr−1 (° lat)−1, accounting for 80% of the OHS maximum. We also find that the eddy-induced MOC weakens, primarily caused by a buoyancy flux change as a result of the direct CO2 effect, and does not compensate the intensified Deacon cell.


2021 ◽  
Author(s):  
Claus W. Böning ◽  
Arne Biastoch ◽  
Klaus Getzlaff ◽  
Patrick Wagner ◽  
Siren Rühs ◽  
...  

<p>A series of global ocean - sea ice model simulations is used to investigate the spatial structure and temporal variability of the sinking branch of the meridional overturning circulation (AMOC) in the subpolar North Atlantic. The experiments include hindcast simulations of the last six decades based on the high-resolution (1/20°) VIKING20X-model forced by the CORE and JRA55-do reanalysis products, supplemented by sensitivity studies with a 1/4°-configuration (ORCA025) aimed at elucidating the roles of variations in the wind stress and buoyancy fluxes. The experiments exhibit different multi-decadal trends in the AMOC, reflecting the well-known sensitivity of ocean-only models to subtle details in the configuration of the subarctic freshwater forcing. All experiments, however, concur in that the dense, southward branch of the overturning is mainly fed by “sinking” (in density space) in the Irminger and Iceland Basins, in accordance with the first results of the OSNAP observational program. Remarkably, the contribution of the Labrador Sea has remained small throughout the whole simulation period, even during the phase of extremely strong convection in the early 1990s: i.e., the rate of deep water exported from the subpolar North Atlantic by the DWBC off Newfoundland never differed by more than O(1 Sv) from the DWBC entering the Labrador Sea at Cape Farewell. The model solutions indicate a particular concentration of the sinking along the deep boundary currents south of the Denmark Straits and south of Iceland, pointing to a prime importance for the AMOC of the outflows from the Nordic Seas and their subsequent enhancement by the entrainment of intermediate waters. Since these include the water masses formed by deep convection in the Labrador and southern Irminger Seas, our study offers an alternative interpretation of the dynamical role of decadal changes in Labrador Sea convection intensity in terms of a remote effect on the deep transports established in the outflow regimes.</p>


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefanie Semper ◽  
Robert S. Pickart ◽  
Kjetil Våge ◽  
Karin Margretha H. Larsen ◽  
Hjálmar Hátún ◽  
...  

Abstract Dense water from the Nordic Seas passes through the Faroe Bank Channel and supplies the lower limb of the Atlantic Meridional Overturning Circulation, a critical component of the climate system. Yet, the upstream pathways of this water are not fully known. Here we present evidence of a previously unrecognised deep current following the slope from Iceland toward the Faroe Bank Channel using high-resolution, synoptic shipboard observations and long-term measurements north of the Faroe Islands. The bulk of the volume transport of the current, named the Iceland-Faroe Slope Jet (IFSJ), is relatively uniform in hydrographic properties, very similar to the North Icelandic Jet flowing westward along the slope north of Iceland toward Denmark Strait. This suggests a common source for the two major overflows across the Greenland-Scotland Ridge. The IFSJ can account for approximately half of the total overflow transport through the Faroe Bank Channel, thus constituting a significant component of the overturning circulation in the Nordic Seas.


2013 ◽  
Vol 9 (4) ◽  
pp. 1495-1504 ◽  
Author(s):  
Z.-S. Zhang ◽  
K. H. Nisancioglu ◽  
M. A. Chandler ◽  
A. M. Haywood ◽  
B. L. Otto-Bliesner ◽  
...  

Abstract. In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high-latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.


2006 ◽  
Vol 19 (15) ◽  
pp. 3751-3767 ◽  
Author(s):  
Véronique Bugnion ◽  
Chris Hill ◽  
Peter H. Stone

Abstract Multicentury sensitivities in a realistic geometry global ocean general circulation model are analyzed using an adjoint technique. This paper takes advantage of the adjoint model’s ability to generate maps of the sensitivity of a diagnostic (i.e., the meridional overturning’s strength) to all model parameters. This property of adjoints is used to review several theories, which have been elaborated to explain the strength of the North Atlantic’s meridional overturning. This paper demonstrates the profound impact of boundary conditions in permitting or suppressing mechanisms within a realistic model of the contemporary ocean circulation. For example, the so-called Drake Passage Effect in which wind stress in the Southern Ocean acts as the main driver of the overturning’s strength, is shown to be an artifact of boundary conditions that restore the ocean’s surface temperature and salinity toward prescribed climatologies. Advective transports from the Indian and Pacific basins play an important role in setting the strength of the overturning circulation under “mixed” boundary conditions, in which a flux of freshwater is specified at the ocean’s surface. The most “realistic” regime couples an atmospheric energy and moisture balance model to the ocean. In this configuration, inspection of the global maps of sensitivity to wind stress and diapycnal mixing suggests a significant role for near-surface Ekman processes in the Tropics. Buoyancy also plays an important role in setting the overturning’s strength, through direct thermal forcing near the sites of convection, or through the advection of salinity anomalies in the Atlantic basin.


2010 ◽  
Vol 23 (15) ◽  
pp. 4243-4254 ◽  
Author(s):  
K. Lorbacher ◽  
J. Dengg ◽  
C. W. Böning ◽  
A. Biastoch

Abstract Some studies of ocean climate model experiments suggest that regional changes in dynamic sea level could provide a valuable indicator of trends in the strength of the Atlantic meridional overturning circulation (MOC). This paper describes the use of a sequence of global ocean–ice model experiments to show that the diagnosed patterns of sea surface height (SSH) anomalies associated with changes in the MOC in the North Atlantic (NA) depend critically on the time scales of interest. Model hindcast simulations for 1958–2004 reproduce the observed pattern of SSH variability with extrema occurring along the Gulf Stream (GS) and in the subpolar gyre (SPG), but they also show that the pattern is primarily related to the wind-driven variability of MOC and gyre circulation on interannual time scales; it is reflected also in the leading EOF of SSH variability over the NA Ocean, as described in previous studies. The pattern, however, is not useful as a “fingerprint” of longer-term changes in the MOC: as shown with a companion experiment, a multidecadal, gradual decline in the MOC [of 5 Sv (1 Sv ≡ 106 m3 s−1) over 5 decades] induces a much broader, basin-scale SSH rise over the mid-to-high-latitude NA, with amplitudes of 20 cm. The detectability of such a trend is low along the GS since low-frequency SSH changes are effectively masked here by strong variability on shorter time scales. More favorable signal-to-noise ratios are found in the SPG and the eastern NA, where a MOC trend of 0.1 Sv yr−1 would leave a significant imprint in SSH already after about 20 years.


Sign in / Sign up

Export Citation Format

Share Document