African Dust: Its Large-Scale Transport over the Atlantic Ocean and its Impact on the Mediterranean Region

Author(s):  
Joseph M. Prospero
2007 ◽  
Vol 37 (2) ◽  
pp. 338-358 ◽  
Author(s):  
Ichiro Fukumori ◽  
Dimitris Menemenlis ◽  
Tong Lee

Abstract A new basin-wide oscillation of the Mediterranean Sea is identified and analyzed using sea level observations from the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter and a numerical ocean circulation model. More than 50% of the large-scale, nontidal, and non-pressure-driven variance of sea level can be attributed to this oscillation, which is nearly uniform in phase and amplitude across the entire basin. The oscillation has periods ranging from 10 days to several years and has a magnitude as large as 10 cm. The model suggests that the fluctuations are driven by winds at the Strait of Gibraltar and its neighboring region, including the Alboran Sea and a part of the Atlantic Ocean immediately to the west of the strait. Winds in this region force a net mass flux through the Strait of Gibraltar to which the Mediterranean Sea adjusts almost uniformly across its entire basin with depth-independent pressure perturbations. The wind-driven response can be explained in part by wind setup; a near-stationary balance is established between the along-strait wind in this forcing region and the sea level difference between the Mediterranean Sea and the Atlantic Ocean. The amplitude of this basin-wide wind-driven sea level fluctuation is inversely proportional to the setup region’s depth but is insensitive to its width including that of Gibraltar Strait. The wind-driven fluctuation is coherent with atmospheric pressure over the basin and contributes to the apparent deviation of the Mediterranean Sea from an inverse barometer response.


2009 ◽  
Vol 137 (11) ◽  
pp. 3933-3959 ◽  
Author(s):  
Beatriz M. Funatsu ◽  
Chantal Claud ◽  
Jean-Pierre Chaboureau

Abstract A characterization of the large-scale environment associated with precipitating systems in the Mediterranean region, based mainly on NOAA-16 Advanced Microwave Sounding Unit (AMSU) observations from 2001 to 2007, is presented. Channels 5, 7, and 8 of AMSU-A are used to identify upper-level features, while a simple and tractable method, based on combinations of channels 3–5 of AMSU-B and insensitive to land–sea contrast, was used to identify precipitation. Rain occurrence is widespread over the Mediterranean in wintertime while reduced or short lived in the eastern part of the basin in summer. The location of convective precipitation shifts from mostly over land from April to August, to mostly over the sea from September to December. A composite analysis depicting large-scale conditions, for cases of either rain alone or extensive areas of deep convection, is performed for selected locations where the occurrence of intense rainfall was found to be important. In both cases, an upper-level trough is seen to the west of the target area, but for extreme rainfall the trough is narrower and has larger amplitude in all seasons. In general, these troughs are also deeper for extreme rainfall. Based on the European Centre for Medium-Range Weather Forecasts operational analyses, it was found that sea surface temperature anomalies composites for extreme rainfall are often about 1 K warmer, compared to nonconvective precipitation conditions, in the vicinity of the affected area, and the wind speed at 850 hPa is also stronger and usually coming from the sea.


2008 ◽  
Vol 17 ◽  
pp. 87-91 ◽  
Author(s):  
A. V. Mehta ◽  
S. Yang

Abstract. Climatological features of mesoscale rain activities over the Mediterranean region between 5° W–40° E and 28° N–48° N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25°×0.25° spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3–5 mm day−1) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (~0.5 mm day−1). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November–December. Over the Mediterranean Sea, an average rainrate of ~1–2 mm day−1 is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.


2011 ◽  
Vol 46 (3) ◽  
pp. 197-209 ◽  
Author(s):  
HA Flocas ◽  
M Hatzaki ◽  
K Tolika ◽  
C Anagnostopoulou ◽  
E Kostopoulou ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 539
Author(s):  
Anastasia Zabaniotou ◽  
Katerina Stamou

Mediterranean ecosystems are threatened by water and nutrient scarcity and continuous loss of soil organic carbon. Urban agglomerations and rural ecosystems in the Mediterranean region and globally are interlinked through the flows of resources/nutrients and wastes. Contributing to balancing these cycles, the present study advocates standardized biochar as a soil amendment, produced from Mediterranean suitable biowaste, for closing the nutrient loop in agriculture, with parallel greenhouse gas reduction, enhancing air quality in urban agglomerations, mitigating climate change. The study’s scope is the contextualization of pyrolytic conditions and biowaste type effects on the yield and properties of biochar and to shed light on biochar’s role in soil fertility and climate change mitigation. Mediterranean-type suitable feedstocks (biowaste) to produce biochar, in accordance with biomass feedstocks approved for use in producing biochar by the European Biochar Certificate, are screened. Data form large-scale and long-period field experiments are considered. The findings advocate the following: (a) pyrolytic biochar application in soils contributes to the retention of important nutrients for agricultural production, thereby reducing the use of fertilizers; (b) pyrolysis does not release carbon dioxide to the atmosphere, contributing positively to the balance of carbon dioxide emissions to the atmosphere, with carbon uptake by plant photosynthesis; (c) biochar stores carbon in soils, counterbalancing the effect of climate change by sequestering carbon; (d) there is an imperative need to identify the suitable feedstock for the production of sustainable and safe biochar from a range of biowaste, according to the European Biochar Certificate, for safe crop production.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e72996 ◽  
Author(s):  
Donato Giovannelli ◽  
Massimiliano Molari ◽  
Giuseppe d’Errico ◽  
Elisa Baldrighi ◽  
Claudia Pala ◽  
...  

2008 ◽  
Vol 17 ◽  
pp. 49-53 ◽  
Author(s):  
D. Wang ◽  
E. N. Anagnostou ◽  
G. Wang

Abstract. The impact of sub-grid variability of precipitation and canopy water storage is investigated over Central-South Europe by applying a new canopy interception scheme into the Community Atmosphere Model (CAM, Version 3) coupled with the Community Land Model (CLM, Version 3). The study shows that while sub-grid variability exerts great impact on the land surface water budget, the impact on the atmospheric hydrological processes is small and only exception being the Mediterranean region. In this region, incorporation of sub-grid variability is shown to reduce precipitation up to 1 mm/day (or ~8% relative to mean precipitation). The evapotranspiration ratio (ratio of evapotranspiration to total precipitation) exhibited insignificant deviations between the simulations with sub-grid variability and the ones without, which indicates that the local source of moisture is not the cause of the reduced precipitation. On the other hand, inducing sub-grid variability alters the large-scale circulation, which transports less water vapor form Atlantic Ocean to inland areas thus reducing precipitation in the Mediterranean region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jan Riegert ◽  
Jiří Šindelář ◽  
Markéta Zárybnická ◽  
Ivan Horáček

AbstractDue to mainly opportunistic hunting behaviour of Barn owl can be its diet composition used for assessing local structure of small-mammal community. We evaluated the structure of small-mammal communities in the Mediterranean region by analysing Barn owl diet using own pellets and literature data (85 localities comprising 182,343 prey individuals). Contrary to widely accepted macroecological theory, we found a latitudinal increase of small-mammal alpha diversity, a less distinct west–east increase and lower diversity on islands. The mean prey weight decreased with increasing latitude, while on islands it decreased with increasing island area. The mean prey weight on islands was further negatively affected by mean land modification by human and positively affected by its range. The diet diversity on islands was not affected either by island area or its distance from the mainland. Its composition largely conformed to the main pattern pronounced over whole the region: an unexpected homogeneity of small-mammal community structure. Despite high beta diversity and large between-sample variation in species composition, Crocidura (+ Suncus etruscus) and murids (Apodemus, Mus, Rattus, in marginal regions partly replaced by gerbillids, Meriones or Microtus) composed more than 90% of owl prey in 92% of samples. Peak abundances of these widespread species are associated with a dynamic mosaic of dense patches of sparse herb vegetation and evergreen sclerophyllous shrublands interspersing areas of human activity, the dominant habitat of the inner Mediterranean and richest food resource for foraging Barn owls. The respective small-mammal species can be looked upon as invasive elements accompanying large scale human colonization of the region since the Neolithic and replacing original island biota. Our study documented that desertification of the Mediterranean played an important role in shaping inverse latitudinal gradient in diversity of small-mammals that contradicts to widely accepted mecroecological theory.


Sign in / Sign up

Export Citation Format

Share Document