scholarly journals The Resonant Interaction of a Tropical Cyclone and a Tropopause Front in a Barotropic Model. Part I: Zonally Oriented Front

2011 ◽  
Vol 68 (3) ◽  
pp. 405-419 ◽  
Author(s):  
Leonhard Scheck ◽  
Sarah C. Jones ◽  
Martin Juckes

Abstract The interaction of a tropical cyclone and a zonally aligned tropopause front is investigated in an idealized framework. A nondivergent barotropic model is used in which the front is represented by a vorticity step, giving a jetlike velocity profile. The excitation of frontal waves by a cyclone located south of the front and the impact of the wave flow on the cyclone motion is studied for different representations of the cyclone and the jet. The evolution from the initial wave excitation until after the cyclone has crossed the front is discussed. The interaction becomes stronger with increasing jet speed. For cyclone representations containing negative relative vorticity, anticyclones develop and can influence the excitation of frontal waves significantly. Resonant frontal waves propagating with a phase speed matching the zonal translation speed of the cyclone are decisive for the interaction. The frontal wave spectrum excited by a cyclone on the front is dominated by waves that are in resonance in the initial phase. These waves have the largest impact on the cyclone motion.

2011 ◽  
Vol 68 (3) ◽  
pp. 420-429 ◽  
Author(s):  
Leonhard Scheck ◽  
Sarah C. Jones ◽  
Martin Juckes

Abstract The influence of frontal waves on the interaction of a tropical cyclone and a tropopause front is investigated in an idealized framework. In a nondivergent barotropic model the front is represented by a vorticity step with a superimposed sinusoidal perturbation. This gives rise to a jet that meanders to the north and south and can be viewed as a sequence of upper-level troughs and ridges. The model evolution depends sensitively on the position of the cyclone relative to the troughs and ridges. Here a bifurcation point is identified that is located on the trough axis at a distance where the zonal speed of the background flow equals the phase speed of the wave. Arbitrarily small displacements from this position determine whether a cyclone is advected toward the front or repelled. Only a limited range of wavelengths can lead to track bifurcations. The largest effects are obtained for resonant frontal waves propagating with a phase speed matching the initial zonal translation speed of the cyclone. Weak and large-scale vortices can be disrupted when approaching the bifurcation point, where they are exposed to continuously strong shear deformation.


2011 ◽  
Vol 24 (4) ◽  
pp. 1138-1153 ◽  
Author(s):  
Ian D. Lloyd ◽  
Gabriel A. Vecchi

Abstract The influence of oceanic changes on tropical cyclone activity is investigated using observational estimates of sea surface temperature (SST), air–sea fluxes, and ocean subsurface thermal structure during the period 1998–2007. SST conditions are examined before, during, and after the passage of tropical cyclones, through Lagrangian composites along cyclone tracks across all ocean basins, with particular focus on the North Atlantic. The influence of translation speed is explored by separating tropical cyclones according to the translation speed divided by the Coriolis parameter. On average for tropical cyclones up to category 2, SST cooling becomes larger as cyclone intensity increases, peaking at 1.8 K in the North Atlantic. Beyond category 2 hurricanes, however, the cooling no longer follows an increasing monotonic relationship with intensity. In the North Atlantic, the cooling for stronger hurricanes decreases, while in other ocean basins the cyclone-induced cooling does not significantly differ from category 2 to category 5 tropical cyclones, with the exception of the South Pacific. Since the SST response is nonmonotonic, with stronger cyclones producing more cooling up to category 2, but producing less or approximately equal cooling for categories 3–5, the observations indicate that oceanic feedbacks can inhibit intensification of cyclones. This result implies that large-scale oceanic conditions are a control on tropical cyclone intensity, since they control oceanic sensitivity to atmospheric forcing. Ocean subsurface thermal data provide additional support for this dependence, showing weaker upper-ocean stratification for stronger tropical cyclones. Intensification is suppressed by strong ocean stratification since it favors large SST cooling, but the ability of tropical cyclones to intensify is less inhibited when stratification is weak and cyclone-induced SST cooling is small. Thus, after accounting for tropical cyclone translation speeds and latitudes, it is argued that reduced cooling under extreme tropical cyclones is the manifestation of the impact of oceanic conditions on the ability of tropical cyclones to intensify.


2018 ◽  
Vol 75 (6) ◽  
pp. 2017-2028 ◽  
Author(s):  
Xuyang Ge ◽  
Ziyu Yan ◽  
Melinda Peng ◽  
Mingyu Bi ◽  
Tim Li

Abstract The impact of different vertical structures of a nearby monsoon gyre (MG) on a tropical cyclone (TC) track is investigated using idealized numerical simulations. In the experiment with a relatively deeper MG, the TC experiences a sharp northward turn at a critical point when its zonal westward-moving speed slows down to zero. At the same time, the total vorticity tendency for the TC wavenumber-1 component nearly vanishes as the vorticity advection by the MG cancels the vorticity advection by the TC. At this point, the TC motion is dominated by the beta effect, as in a no-mean-flow environment, and takes a sharp northward turn. In contrast, the TC does not exhibit a sharp northward turn with a shallower MG nearby. In the case with a deeper MG, a greater relative vorticity gradient of the MG promotes a quicker attraction between the TC and MG through the vorticity segregation process. In addition, a larger outer size of the TC also favors a faster westward propagation from its initial position, thus having more potential to collocate with the MG. Once the coalescence is in place, the Rossby wave energy dispersion associated with the TC and MG together is enhanced and rapidly strengthens the southwesterly flow on the eastern flank of both systems. The steering flow from both the beta gyre and the Rossby wave dispersion leads the TC to take a sharp northward track when the total vorticity tendency is at its minimum. This study indicates the importance of good representations of the TC structure and its nearby environmental flows in order to accurately predict TC motions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pietro Coletti ◽  
Pieter Libin ◽  
Oana Petrof ◽  
Lander Willem ◽  
Steven Abrams ◽  
...  

Abstract Background In response to the ongoing COVID-19 pandemic, several countries adopted measures of social distancing to a different degree. For many countries, after successfully curbing the initial wave, lockdown measures were gradually lifted. In Belgium, such relief started on May 4th with phase 1, followed by several subsequent phases over the next few weeks. Methods We analysed the expected impact of relaxing stringent lockdown measures taken according to the phased Belgian exit strategy. We developed a stochastic, data-informed, meta-population model that accounts for mixing and mobility of the age-structured population of Belgium. The model is calibrated to daily hospitalization data and is able to reproduce the outbreak at the national level. We consider different scenarios for relieving the lockdown, quantified in terms of relative reductions in pre-pandemic social mixing and mobility. We validate our assumptions by making comparisons with social contact data collected during and after the lockdown. Results Our model is able to successfully describe the initial wave of COVID-19 in Belgium and identifies interactions during leisure/other activities as pivotal in the exit strategy. Indeed, we find a smaller impact of school re-openings as compared to restarting leisure activities and re-openings of work places. We also assess the impact of case isolation of new (suspected) infections, and find that it allows re-establishing relatively more social interactions while still ensuring epidemic control. Scenarios predicting a second wave of hospitalizations were not observed, suggesting that the per-contact probability of infection has changed with respect to the pre-lockdown period. Conclusions Contacts during leisure activities are found to be most influential, followed by professional contacts and school contacts, respectively, for an impending second wave of COVID-19. Regular re-assessment of social contacts in the population is therefore crucial to adjust to evolving behavioral changes that can affect epidemic diffusion.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 688
Author(s):  
Soline Bielli ◽  
Christelle Barthe ◽  
Olivier Bousquet ◽  
Pierre Tulet ◽  
Joris Pianezze

A set of numerical simulations is relied upon to evaluate the impact of air-sea interactions on the behaviour of tropical cyclone (TC) Bejisa (2014), using various configurations of the coupled ocean-atmosphere numerical system Meso-NH-NEMO. Uncoupled (SST constant) as well as 1D (use of a 1D ocean mixed layer) and 3D (full 3D ocean) coupled experiments are conducted to evaluate the impact of the oceanic response and dynamic processes, with emphasis on the simulated structure and intensity of TC Bejisa. Although the three experiments are shown to properly capture the track of the tropical cyclone, the intensity and the spatial distribution of the sea surface cooling show strong differences from one coupled experiment to another. In the 1D experiment, sea surface cooling (∼1 ∘C) is reduced by a factor 2 with respect to observations and appears restricted to the depth of the ocean mixed layer. Cooling is maximized along the right-hand side of the TC track, in apparent disagreement with satellite-derived sea surface temperature observations. In the 3D experiment, surface cooling of up to 2.5 ∘C is simulated along the left hand side of the TC track, which shows more consistency with observations both in terms of intensity and spatial structure. In-depth cooling is also shown to extend to a much deeper depth, with a secondary maximum of nearly 1.5 ∘C simulated near 250 m. With respect to the uncoupled experiment, heat fluxes are reduced from about 20% in both 1D and 3D coupling configurations. The tropical cyclone intensity in terms of occurrence of 10-m TC wind is globally reduced in both cases by about 10%. 3D-coupling tends to asymmetrize winds aloft with little impact on intensity but rather a modification of the secondary circulation, resulting in a slight change in structure.


2010 ◽  
Vol 138 (4) ◽  
pp. 1368-1382 ◽  
Author(s):  
Jeffrey S. Gall ◽  
William M. Frank ◽  
Matthew C. Wheeler

Abstract This two-part series of papers examines the role of equatorial Rossby (ER) waves in tropical cyclone (TC) genesis. To do this, a unique initialization procedure is utilized to insert n = 1 ER waves into a numerical model that is able to faithfully produce TCs. In this first paper, experiments are carried out under the idealized condition of an initially quiescent background environment. Experiments are performed with varying initial wave amplitudes and with and without diabatic effects. This is done to both investigate how the properties of the simulated ER waves compare to the properties of observed ER waves and explore the role of the initial perturbation strength of the ER wave on genesis. In the dry, frictionless ER wave simulation the phase speed is slightly slower than the phase speed predicted from linear theory. Large-scale ascent develops in the region of low-level poleward flow, which is in good agreement with the theoretical structure of an n = 1 ER wave. The structures and phase speeds of the simulated full-physics ER waves are in good agreement with recent observational studies of ER waves that utilize wavenumber–frequency filtering techniques. Convection occurs primarily in the eastern half of the cyclonic gyre, as do the most favorable conditions for TC genesis. This region features sufficient midlevel moisture, anomalously strong low-level cyclonic vorticity, enhanced convection, and minimal vertical shear. Tropical cyclogenesis occurs only in the largest initial-amplitude ER wave simulation. The formation of the initial tropical disturbance that ultimately develops into a tropical cyclone is shown to be sensitive to the nonlinear horizontal momentum advection terms. When the largest initial-amplitude simulation is rerun with the nonlinear horizontal momentum advection terms turned off, tropical cyclogenesis does not occur, but the convectively coupled ER wave retains the properties of the ER wave observed in the smaller initial-amplitude simulations. It is shown that this isolated wave-only genesis process only occurs for strong ER waves in which the nonlinear advection is large. Part II will look at the more realistic case of ER wave–related genesis in which a sufficiently intense ER wave interacts with favorable large-scale flow features.


2021 ◽  
Author(s):  
Niama Boukachaba ◽  
Oreste Reale ◽  
Erica L. McGrath-Spangler ◽  
Manisha Ganeshan ◽  
Will McCarty ◽  
...  

<p>Previous work by this team has demonstrated that assimilation of IR radiances in partially cloudy regions is beneficial to numerical weather predictions (NWPs), improving the representation of tropical cyclones (TCs) in global analyses and forecasts. The specific technique used by this team is based on the “cloud-clearing CC” methodology. Cloud-cleared hyperspectral IR radiances (CCRs), if thinned more aggressively than clear-sky radiances, have shown a strong impact on the analyzed representation and structure of TCs. However, the use of CCRs in an operational context is limited by 1) latency; and 2) external dependencies present in the original cloud-clearing algorithm. In this study, the Atmospheric InfraRed Sounder (AIRS) CC algorithm was (a) ported to NASA high end computing resources (HEC), (b) deprived of external dependencies, and (c) parallelized improving the processing by a factor of 70. The revised AIRS CC algorithm is now customizable, allowing user’s choice of channel selection, user’s model's fields as first guess, and could perform in real time. This study examines the benefits achieved when assimilating CCRs using the NASA’s Goddard Earth Observing System (GEOS) hybrid 4DEnVar system. The focus is on the 2017 Atlantic hurricane season with three infamous hurricanes (Harvey, Irma, and Maria) investigated in depth.  The impact of assimilating customized CCRs on the analyzed representation of tropical cyclone horizontal and vertical structure and on forecast skill is discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document