scholarly journals Changes in the Subduction of Southern Ocean Water Masses at the End of the Twenty-First Century in Eight IPCC Models

2010 ◽  
Vol 23 (24) ◽  
pp. 6526-6541 ◽  
Author(s):  
Stephanie M. Downes ◽  
Nathaniel L. Bindoff ◽  
Stephen R. Rintoul

Abstract A multimodel comparison method is used to assess the sensitivity of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) formation to climate change. For the Intergovernmental Panel on Climate Change A2 emissions scenario (where atmospheric CO2 is 860 ppm at 2100), the models show cooling and freshening on density surfaces less than about 27.4 kg m−3, a pattern that has been observed in the late twentieth century. SAMW (defined by the low potential vorticity layer) and AAIW (defined by the salinity minimum layer) warm and freshen as they shift to lighter density classes. Heat and freshwater fluxes at the ocean surface dominate the projected buoyancy gain at outcrop regions of SAMW and AAIW, whereas the net increase in the Ekman flux of heat and freshwater contributes to a lesser extent. This buoyancy gain, combined with shoaling of the winter mixed layer, reduces the volume of SAMW subducted into the ocean interior by a mean of 8 Sv (12%), and the subduction of AAIW decreases by a mean of 14 Sv (23%; 1 Sv ≡ 106 m3 s−1). Decreases in the projected subduction of the key Southern Ocean upper-water masses imply a slow down in the Southern Ocean circulation in the future, driven by surface warming and freshening. A reduction in the subduction of intermediate waters implies a likely future decrease in the capacity of the Southern Ocean to sequester CO2.

2009 ◽  
Vol 22 (12) ◽  
pp. 3289-3302 ◽  
Author(s):  
Stephanie M. Downes ◽  
Nathaniel L. Bindoff ◽  
Stephen R. Rintoul

Abstract Changes in the temperature, salinity, and subduction of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) between the 1950s and 2090s are diagnosed using the CSIRO Mark version 3.5 (Mk3.5) climate system model Caps under a CO2 forcing that reaches 860 ppm by the year 2100. These Southern Ocean upper-limb water masses ventilate the ocean interior, and changes in their properties have been related to climate change in numerous studies. Over time, the authors follow the low potential vorticity and salinity minimum layers describing SAMW and AAIW and find that the water column in the 2090s shifts to lighter densities by approximately 0.2 kg m−3. The model projects a reduction in the SAMW and AAIW annual mean subduction rates as a result of a combination of a shallower mixed layer, increased potential vorticity at the base of the mixed layer, and a net buoyancy gain. There is little change in the projected total volume of SAMW transported into the ocean interior via the subduction process; however, the authors find a significant decrease in the subduction of AAIW. The authors find overall that increases in the air–sea surface heat and freshwater fluxes mainly control the reduction in the mean loss of the SAMW and AAIW surface buoyancy flux when compared with the effect of changes supplied by Ekman transport because of increased zonal wind stress. In the A2 scenario, there are cooling and freshening on neutral density surfaces less than 27.3 kg m−3 in response to the warming and freshening observed at the ocean’s surface. The model projects deepening of density surfaces due to southward shifts in the outcrop regions and the downward displacement of these surfaces north of 45°S. The volume transport across 32°S is predicted to decrease in all three basins, with southward transport of SAMW and AAIW decreasing by up to 1.2 and 2.0 Sv (1 Sv ≡ 106 m3 s−1), respectively, in the Indian Ocean. These projected reductions in the subduction and transport of mode and intermediate water masses in the CSIRO Mk3.5 model could potentially decrease the absorption and storage of CO2 in the Southern Ocean.


2017 ◽  
Author(s):  
Paula C. Pardo ◽  
Bronte Tilbrook ◽  
Clothilde Langlais ◽  
Tom W. Trull ◽  
Steve R. Rintoul

Abstract. Biogeochemical change in the water masses of the Southern Ocean, south of Tasmania, was assessed for the 16-year period between 1995 and 2011 using data from 4 summer repeats of the WOCE/JGOFS/CLIVAR/GO-SHIP SR03 hydrographic section (at ~ 140° E). Changes in temperature, salinity, oxygen, and nutrients were used to disentangle the effect of solubility, biology, circulation and anthropogenic carbon (CANT) uptake on the variability of dissolved inorganic carbon (DIC) for 8 water mass layers defined by neutral surfaces (ϒn). CANT was estimated using an improved back-calculation method. Warming (~ 0.0352 ± 0.0170 °C yr−1) of Subtropical Central Water (STCW) and Antarctic Surface Water (AASW) layers decreased their gas solubility, and accordingly DIC concentrations increased less rapidly than expected from equilibration with rising atmospheric CO2 (~ 0.86 ± 0.16 μmol kg−1 yr−1 versus ~ 1 ± 0.12 μmol kg−1 yr−1). An increase in apparent oxygen utilisation (AOU) occurred in these layers due to either remineralization of organic matter or intensification of upwelling. The range of estimates for the increases of CANT were 0.71 ± 0.08 to 0.93 ± 0.08 μmol kg−1 yr−1 for STCW and 0.35 ± 0.14 to 0.65 ± 0.21 μmol kg−1 yr−1 for AASW, with the lower values in each water mass obtained by assigning all the AOU change to remineralization. DIC increases in the Sub-Antarctic Mode Water (SAMW, 1.10 ± 0.14 μmol kg−1 yr−1) and Antarctic Intermediate Water (AAIW, 0.40 ± 0.15 μmol kg−1 yr−1) layers were similar to the calculated CANT trends. For SAMW, the CANT increase tracked rising atmospheric CO2. As a consequence of the general DIC increase, decreases in total pH (pHT) and aragonite saturation (ΩAr) were found in most water masses, with the upper ocean and the SAMW layer presenting the largest trends for pHT decrease (~ −0.0031 ± 0.0004 yr−1). DIC increases in deep and bottom layers (~ 0.24 ± 0.04 μmol kg−1 yr−1) resulted from the advection of old deep waters to resupply increased upwelling, as corroborated by increasing silicate (~ 0.21 ± 0.07 μmol kg−1 yr−1), which also reached the upper layers near the Antarctic Divergence (~ 0.36 ± 0.06 μmol kg−1 yr−1) and was accompanied by an increase in salinity. The observed changes in DIC over the 16-year span caused a shoaling (~ 340 m) of the aragonite saturation depth (ASD, ΩAr = 1) within Upper Circumpolar Deep Water that followed the upwelling path of this layer. From all our results, we conclude a scenario of increased transport of deep waters into the section and enhanced upwelling at high latitudes for the period between 1995 and 2011, probably linked to a positive trend in the Southern Annular Mode. Although enhanced upwelling lowered the capacity of the AASW layer to uptake atmospheric CO2, it did not limit that of the newly forming SAMW and AAIW, which exhibited CANT storage rates (~ 0.41 ± 0.20 mol m−2 yr−1) twice that of the upper layers.


2007 ◽  
Vol 20 (20) ◽  
pp. 5061-5080 ◽  
Author(s):  
Bernadette M. Sloyan ◽  
Igor V. Kamenkovich

Abstract The Southern Ocean’s Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) are two globally significant upper-ocean water masses that circulate in all Southern Hemisphere subtropical gyres and cross the equator to enter the North Pacific and North Atlantic Oceans. Simulations of SAMW and AAIW for the twentieth century in eight climate models [GFDL-CM2.1, CCSM3, CNRM-CM3, MIROC3.2(medres), MIROC3.2(hires), MRI-CGCM2.3.2, CSIRO-Mk3.0, and UKMO-HadCM3] that provided their output in support of the Intergovernmental Panel on Climate Change’s Fourth Assessment Report (IPCC AR4) have been compared to the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Atlas of Regional Seas. The climate models, except for UKMO-HadCM3, CSIRO-Mk3.0, and MRI-CGCM2.3.2, provide a reasonable simulation of SAMW and AAIW isopycnal temperature and salinity in the Southern Ocean. Many models simulate the potential vorticity minimum layer and salinity minimum layer of SAMW and AAIW, respectively. However, the simulated SAMW layer is generally thinner and at lighter densities than observed. All climate models display a limited equatorward extension of SAMW and AAIW north of the Antarctic Circumpolar Current. Errors in the simulation of SAMW and AAIW property characteristics are likely to be due to a combination of many errors in the climate models, including simulation of wind and buoyancy forcing, inadequate representation of subgrid-scale mixing processes in the Southern Ocean, and midlatitude diapycnal mixing parameterizations.


2014 ◽  
Vol 10 (1) ◽  
pp. 293-303 ◽  
Author(s):  
S. Romahn ◽  
A. Mackensen ◽  
J. Groeneveld ◽  
J. Pätzold

Abstract. The importance of intermediate water masses in climate change and ocean circulation has been emphasized recently. In particular, Southern Ocean Intermediate Waters (SOIW), such as Antarctic Intermediate Water and Subantarctic Mode Water, are thought to have acted as active interhemispheric transmitter of climate anomalies. Here we reconstruct changes in SOIW signature and spatial and temporal evolution based on a 40 kyr time series of oxygen and carbon isotopes as well as planktic Mg/Ca based thermometry from Site GeoB12615-4 in the western Indian Ocean. Our data suggest that SOIW transmitted Antarctic temperature trends to the equatorial Indian Ocean via the "oceanic tunnel" mechanism. Moreover, our results reveal that deglacial SOIW carried a signature of aged Southern Ocean deep water. We find no evidence of increased formation of intermediate waters during the deglaciation.


2012 ◽  
Vol 25 (11) ◽  
pp. 3894-3908 ◽  
Author(s):  
Roland Séférian ◽  
Daniele Iudicone ◽  
Laurent Bopp ◽  
Tilla Roy ◽  
Gurvan Madec

Impacts of climate change on air–sea CO2 exchange are strongly region dependent, particularly in the Southern Ocean. Yet, in the Southern Ocean the role of water masses in the uptake of anthropogenic carbon is still debated. Here, a methodology is applied that tracks the carbon flux of each Southern Ocean water mass in response to climate change. A global marine biogeochemical model was coupled to a climate model, making 140-yr Coupled Model Intercomparison Project phase 5 (CMIP5)-type simulations, where atmospheric CO2 increased by 1% yr−1 to 4 times the preindustrial concentration (4 × CO2). Impacts of atmospheric CO2 (carbon-induced sensitivity) and climate change (climate-induced sensitivity) on the water mass carbon fluxes have been isolated performing two sensitivity simulations. In the first simulation, the atmospheric CO2 influences solely the marine carbon cycle, while in the second simulation, it influences both the marine carbon cycle and earth’s climate. At 4 × CO2, the cumulative carbon uptake by the Southern Ocean reaches 278 PgC, 53% of which is taken up by modal and intermediate water masses. The carbon-induced and climate-induced sensitivities vary significantly between the water masses. The carbon-induced sensitivities enhance the carbon uptake of the water masses, particularly for the denser classes. But, enhancement strongly depends on the water mass structure. The climate-induced sensitivities either strengthen or weaken the carbon uptake and are influenced by local processes through changes in CO2 solubility and stratification, and by large-scale changes in outcrop surface (OS) areas. Changes in OS areas account for 45% of the climate-induced reduction in the Southern Ocean carbon uptake and are a key factor in understanding the future carbon uptake of the Southern Ocean.


2021 ◽  
Author(s):  
Andrew Meijers ◽  
David Munday ◽  
Tilla Roy ◽  
Jean-Baptiste Sallée

<p>We examine the representation of Southern Ocean water mass properties, circulation and transformation in an ensemble of CMIP6 models, under historical climate forcing conditions and under a range of future climate scenarios. By using a dynamically defined water mass classification scheme based on physical characteristics (salinity minimum, potential vorticity minimum etc) rather than fixed water mass properties, we are able to compare water masses across a range of models, often with significant water mass property differences, as well as within single models where water mass properties change under climate forcing. We find that under strong climate forcing scenarios (ssp585) the heat content of SubAntarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW) and Circumpolar Deep Water (CDW) all increase consistently across models, while Antarctic Bottom Water (AABW) does not change significantly. Importantly this change is strongly modulated by using dynamic definitions. Both SAMW and AAIW lighten significantly in density, and using time varying definitions their volumes remain relatively constant, whereas using a time invariant definition both experience extremely significant increases in volume and heat content. We show that dynamically it is the ocean interior, CDW and AAIW, that dominate heat uptake under strong forcing. Similarly, dissolved inorganic carbon uptake occurs predominantly in the CDW. In contrast AABW volumes decrease significantly.</p><p>There is a consistent ‘fingerprint’ of temperature change in density space across all models under strong forcing scenarios, with CDW experiencing surface intensified warming as it shoals to the south, and SAMW/AAIW demonstrating cooling and freshening in their subducted layers and a uniform warming in the surface layers. We show that the upper cell of the residual overturning circulation (calculated with the new availability of eddy parametrisation terms in CMIP6) consistently increases across all models evaluated, by 10-50% (up to 10 Sv in some models), while the lower cell is dramatically decreased in strength, declining by up to 70% in some models. We provide evidence that surface warming may be modulated by increased eddy driven upwelling, as well as surface freshening driving the shutdown of AABW formation. Finally we compute a Walin water mass budget, balancing surface forcing, interior storage and meridional export and inferring interior mixing between water masses, and contrast all findings with similar analyses in CMIP5.</p><p> </p>


2017 ◽  
Vol 14 (22) ◽  
pp. 5217-5237 ◽  
Author(s):  
Paula Conde Pardo ◽  
Bronte Tilbrook ◽  
Clothilde Langlais ◽  
Thomas William Trull ◽  
Stephen Rich Rintoul

Abstract. Biogeochemical change in the water masses of the Southern Ocean, south of Tasmania, was assessed for the 16-year period between 1995 and 2011 using data from four summer repeats of the WOCE–JGOFS–CLIVAR–GO-SHIP (Key et al., 2015; Olsen et al., 2016) SR03 hydrographic section (at ∼ 140° E). Changes in temperature, salinity, oxygen, and nutrients were used to disentangle the effect of solubility, biology, circulation and anthropogenic carbon (CANT) uptake on the variability of dissolved inorganic carbon (DIC) for eight water mass layers defined by neutral surfaces (γn). CANT was estimated using an improved back-calculation method. Warming (∼ 0.0352 ± 0.0170 °C yr−1) of Subtropical Central Water (STCW) and Antarctic Surface Water (AASW) layers decreased their gas solubility, and accordingly DIC concentrations increased less rapidly than expected from equilibration with rising atmospheric CO2 (∼ 0.86 ± 0.16 µmol kg−1 yr−1 versus ∼ 1 ± 0.12 µmol kg−1 yr−1). An increase in apparent oxygen utilisation (AOU) occurred in these layers due to either remineralisation of organic matter or intensification of upwelling. The range of estimates for the increases in CANT were 0.71 ± 0.08 to 0.93 ± 0.08 µmol kg−1 yr−1 for STCW and 0.35 ± 0.14 to 0.65 ±  0.21 µmol kg−1 yr−1 for AASW, with the lower values in each water mass obtained by assigning all the AOU change to remineralisation. DIC increases in the Sub-Antarctic Mode Water (SAMW, 1.10 ± 0.14 µmol kg−1 yr−1) and Antarctic Intermediate Water (AAIW, 0.40 ± 0.15 µmol kg−1 yr−1) layers were similar to the calculated CANT trends. For SAMW, the CANT increase tracked rising atmospheric CO2. As a consequence of the general DIC increase, decreases in total pH (pHT) and aragonite saturation (ΩAr) were found in most water masses, with the upper ocean and the SAMW layer presenting the largest trends for pHT decrease (∼ −0.0031 ± 0.0004 yr−1). DIC increases in deep and bottom layers (∼ 0.24 ± 0.04 µmol kg−1 yr−1) resulted from the advection of old deep waters to resupply increased upwelling, as corroborated by increasing silicate (∼ 0.21 ± 0.07 µmol kg−1 yr−1), which also reached the upper layers near the Antarctic Divergence (∼ 0.36 ± 0.06 µmol kg−1 yr−1) and was accompanied by an increase in salinity. The observed changes in DIC over the 16-year span caused a shoaling (∼ 340 m) of the aragonite saturation depth (ASD, ΩAr =  1) within Upper Circumpolar Deep Water that followed the upwelling path of this layer. From all our results, we conclude a scenario of increased transport of deep waters into the section and enhanced upwelling at high latitudes for the period between 1995 and 2011 linked to strong westerly winds. Although enhanced upwelling lowered the capacity of the AASW layer to uptake atmospheric CO2, it did not limit that of the newly forming SAMW and AAIW, which exhibited CANT storage rates (∼ 0.41 ± 0.20 mol m−2 yr−1) twice that of the upper layers.


2017 ◽  
Author(s):  
Aitana Forcén-Vázquez ◽  
Michael J. M. Williams ◽  
Melissa Bowen ◽  
Lionel Carter ◽  
Helen Bostock

Abstract. New Zealand’s subantarctic region is a dynamic oceanographic zone with the Subtropical Front (STF) to the north and the Subantarctic Front (SAF) to the south. Both the fronts and their associated currents are strongly influenced by topography: the South Island of New Zealand and the Chatham Rise for the STF, and Macquarie Ridge and Campbell Plateau for the SAF. Here for the first time we present a consistent picture across the subantarctic region of the relationships between front positions, bathymetry and water mass structure using eight high resolution oceanographic sections that span the region. Our results show that the northwest side of Campbell Plateau is comparatively warm due to a southward extension of the STF over the plateau. The SAF is steered south and east by Macquarie Ridge and Campbell Plateau, with waters originating in the SAF also found north of the plateau in the Bounty Trough. Subantarctic Mode Water (SAMW) formation is confirmed to exist south of the plateau on the northern side of the SAF in winter, while on Campbell Plateau a deep reservoir persists into the following autumn. Antarctic Intermediate Water (AAIW) is observed in the deeper regions around the edges of the plateau, but not on the plateau, confirming that the waters on the plateau are effectively isolated from AAIW and deeper water masses that typify the open Southern Ocean waters.


2019 ◽  
Vol 117 (2) ◽  
pp. 889-894
Author(s):  
Torben Struve ◽  
David J. Wilson ◽  
Tina van de Flierdt ◽  
Naomi Pratt ◽  
Kirsty C. Crocket

The Southern Ocean is a key region for the overturning and mixing of water masses within the global ocean circulation system. Because Southern Ocean dynamics are influenced by the Southern Hemisphere westerly winds (SWW), changes in the westerly wind forcing could significantly affect the circulation and mixing of water masses in this important location. While changes in SWW forcing during the Holocene (i.e., the last ∼11,700 y) have been documented, evidence of the oceanic response to these changes is equivocal. Here we use the neodymium (Nd) isotopic composition of absolute-dated cold-water coral skeletons to show that there have been distinct changes in the chemistry of the Southern Ocean water column during the Holocene. Our results reveal a pronounced Middle Holocene excursion (peaking ∼7,000–6,000 y before present), at the depth level presently occupied by Upper Circumpolar Deep Water (UCDW), toward Nd isotope values more typical of Pacific waters. We suggest that poleward-reduced SWW forcing during the Middle Holocene led to both reduced Southern Ocean deep mixing and enhanced influx of Pacific Deep Water into UCDW, inducing a water mass structure that was significantly different from today. Poleward SWW intensification during the Late Holocene could then have reinforced deep mixing along and across density surfaces, thus enhancing the release of accumulated CO2 to the atmosphere.


2012 ◽  
Vol 42 (8) ◽  
pp. 1288-1302 ◽  
Author(s):  
L. Shogo Urakawa ◽  
Hiroyasu Hasumi

Abstract Cabbeling effect on the water mass transformation in the Southern Ocean is investigated with the use of an eddy-resolving Southern Ocean model. A significant amount of water is densified by cabbeling: water mass transformation rates are about 4 Sv (1 Sv ≡ 106 m3 s−1) for transformation from surface/thermocline water to Subantarctic Mode Water (SAMW), about 7 Sv for transformation from SAMW to Antarctic Intermediate Water (AAIW), and about 5 Sv for transformation from AAIW to Upper Circumpolar Deep Water. These diapycnal volume transports occur around the Antarctic Circumpolar Current (ACC), where mesoscale eddies are active. The water mass transformation by cabbeling in this study is also characterized by a large amount of densification of Lower Circumpolar Deep Water (LCDW) into Antarctic Bottom Water (AABW) (about 9 Sv). Large diapycnal velocity is found not only along the ACC but also along the coast of Antarctica at the boundary between LCDW and AABW. It is found that about 3 Sv of LCDW is densified into AABW by cabbeling on the continental slopes of Antarctica in this study. This densification is not small compared with observational and numerical estimates on the AABW formation rate, which ranges from 10 to 20 Sv.


Sign in / Sign up

Export Citation Format

Share Document