tunnel mechanism
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5909
Author(s):  
Hicham Helal ◽  
Zineb Benamara ◽  
Mouhamed Amine Wederni ◽  
Sabrine Mourad ◽  
Kamel Khirouni ◽  
...  

Au/0.8 nm–GaN/n–GaAs Schottky diodes were manufactured and electrically characterized over a wide temperature range. As a result, the reverse current Iinv increments from 1 × 10−7 A at 80 K to about 1 × 10−5 A at 420 K. The ideality factor n shows low values, decreasing from 2 at 80 K to 1.01 at 420 K. The barrier height qϕb grows abnormally from 0.46 eV at 80 K to 0.83 eV at 420 K. The tunnel mechanism TFE effect is the responsible for the qϕb behavior. The series resistance Rs is very low, decreasing from 13.80 Ω at 80 K to 4.26 Ω at 420 K. These good results are due to the good quality of the interface treated by the nitridation process. However, the disadvantage of the nitridation treatment is the fact that the GaN thin layer causes an inhomogeneous barrier height.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sharnil Pandya ◽  
Anirban Sur ◽  
Ketan Kotecha

Purpose The purpose of the presented IoT based sensor-fusion assistive technology for COVID-19 disinfection termed as “Smart epidemic tunnel” is to protect an individual using an automatic sanitizer spray system equipped with a sanitizer sensing unit based on individual using an automatic sanitizer spray system equipped with a sanitizer sensing unit based on human motion detection. Design/methodology/approach The presented research work discusses a smart epidemic tunnel that can assist an individual in immediate disinfection from COVID-19 infections. The authors have presented a sensor-fusion-based automatic sanitizer tunnel that detects a human using an ultrasonic sensor from the height of 1.5 feet and disinfects him/her using the spread of a sanitizer spray. The presented smart tunnel operates using a solar cell during the day time and switched to a solar power-bank power mode during night timings using a light-dependent register sensing unit. Findings The investigation results validate the performance evaluation of the presented smart epidemic tunnel mechanism. The presented smart tunnel can prevent or disinfect an outsider who is entering a particular building or a premise from COVID-19 infection possibilities. Furthermore, it has also been observed that the presented sensor-fusion-based mechanism can disinfect a person in a time of span of just 10 s. The presented smart epidemic tunnel is embedded with an intelligent sanitizer sensing unit which stores the essential information in a cloud platform such as Google Fire-base. Thus, the proposed system favours society by saving time and helps in lowering the spread of coronavirus. It also provides daily, weekly and monthly reports of the counts of individuals, along with in-out timestamps and power usage reports. Practical implications The presented system has been designed and developed after the lock-down period to disinfect an individual from the possibility of COVID-19 infections. Social implications The presented smart epidemic tunnel reduced the possibility by disinfecting an outside individual/COVID-19 suspect from spreading the COVID-19 infections in a particular building or a premise. Originality/value The presented system is an original work done by all the authors which have been installed at the Symbiosis Institute of Technology premise and have undergone rigorous experimentation and testing by the authors and end-users.


2019 ◽  
Vol 61 (7) ◽  
pp. 1262
Author(s):  
Д.А. Балаев ◽  
А.Д. Балаев

The paper presents the results of a study of the electrical properties of a system of nanogranular amorphous Fe-SiO films with a SiO concentration from 0 to 92 Vol.%. For samples with a low SiO content, metallic conductivity takes place. With an increase of the dielectric content, a concentration transition of conduction from the metallic regime to the tunnel regime at a dielectric concentration x  0.6 is observed. At the same concentration, a transition ferromagnet - superparamagnet occurs, which was previously investigated by the magnetic method. For compositions corresponding to the dielectric region, the temperature dependences of the electrical resistance (T) follow the law (T) ~ exp(2(С/kT)1/2), which is typical for the tunnel mechanism of conductivity. Estimation of the sizes of metal granules from the values of the tunneling-activation energy C showed a good agreement with the sizes obtained earlier from the analysis of magnetic properties. In the dielectric range of the compositions, a giant magnetoresistive effect was obtained, reaching 25% at low temperatures.


2014 ◽  
Vol 10 (1) ◽  
pp. 293-303 ◽  
Author(s):  
S. Romahn ◽  
A. Mackensen ◽  
J. Groeneveld ◽  
J. Pätzold

Abstract. The importance of intermediate water masses in climate change and ocean circulation has been emphasized recently. In particular, Southern Ocean Intermediate Waters (SOIW), such as Antarctic Intermediate Water and Subantarctic Mode Water, are thought to have acted as active interhemispheric transmitter of climate anomalies. Here we reconstruct changes in SOIW signature and spatial and temporal evolution based on a 40 kyr time series of oxygen and carbon isotopes as well as planktic Mg/Ca based thermometry from Site GeoB12615-4 in the western Indian Ocean. Our data suggest that SOIW transmitted Antarctic temperature trends to the equatorial Indian Ocean via the "oceanic tunnel" mechanism. Moreover, our results reveal that deglacial SOIW carried a signature of aged Southern Ocean deep water. We find no evidence of increased formation of intermediate waters during the deglaciation.


2013 ◽  
Vol 9 (4) ◽  
pp. 4035-4063 ◽  
Author(s):  
S. Romahn ◽  
A. Mackensen ◽  
J. Groeneveld ◽  
J. Pätzold

Abstract. The importance of intermediate water masses in climate change and ocean circulation has been emphasized recently. In particular, Antarctic Intermediate Water (AAIW) is thought to have acted as an active interhemispheric transmitter of climate anomalies. Here we reconstruct changes in AAIW signature and spatial and temporal evolution based on a 40 kyr time series of oxygen and carbon isotopes as well as planktic Mg/Ca based thermometry from a site in the western Indian Ocean. Our data suggest that AAIW transmitted Antarctic temperature trends to the equatorial Indian Ocean via the "oceanic tunnel" mechanism. Moreover, our results reveal that deglacial AAIW carried a signature of aged Southern Ocean deep water. We find no evidence of increased formation of intermediate waters during the deglaciation.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Gang Ren ◽  
Lei Zhang ◽  
Feng Yan ◽  
Shengli Zhang ◽  
Dongsheng Lei ◽  
...  

Cholesteryl ester transfer protein (CETP) mediates the transfer of neutral lipids, including cholesteryl esters (CEs) and triglycerides (TGs), between HDL, LDL and VLDL. Lipoprotein particles contain a neutral lipid core composed of CE and TG surrounded by a surface monolayer of phospholipids (PL), free cholesterol (FC), and apolipoproteins, most notably, apo B-100 in LDL and VLDL and apo A-I in HDL. An elevated level of LDL-cholesterol (LDL-C) and/or a low level of HDL-cholesterol (HDL-C) in human plasma are major risk factors for cardiovascular disease (CVD). Since increased CETP can reduce HDL-C concentration and CETP deficiency is associated with elevated HDL-C levels, CETP inhibitors, including torcetrapib, anacetrapib and dalcetrapib have been investigated in clinical trials for treating CVD. Despite the intense clinical interest in CETP inhibition, little is known concerning the molecular mechanisms of CETP-mediated lipid transfer among lipoproteins, or even how CETP interacts with lipoproteins. CETP is a hydrophobic glycoprotein of 476 amino acids (∼53 kDa, before posttranslational modification). Its crystal structure reveals a banana-shaped molecule with N- and C-terminal β-barrel domains, a central β-sheet, and a ∼60 Å-long hydrophobic central cavity. Three CETP neutral lipid transfer hypotheses were proposed more than two decades ago: 1) a shuttle mechanism that involves CETP collecting CEs from one lipoprotein and delivering them through the aqueous phase to another lipoprotein; 2) a tunnel mechanism in which CETP bridges two lipoproteins forming a ternary complex, with lipids flowing from the donor to acceptor lipoprotein through the CETP molecule; and 3) a modified tunnel mechanism implicating a CETP dimer. One difficulty in investigating CETP mechanisms using structural methods is that interaction with CETP can alter the size, shape, and composition of lipoproteins, especially HDL. We validated an optimized negative-staining electron microscopy (NS-EM) protocol in which flash-fixation of lipoprotein particles preserves a near native-state conformation for direct visualization of individual molecular or macromolecular particles. We applied this protocol to study the mechanisms by which CETP interacts with spherical HDL, LDL and VLDL. Three-dimensional (3D) reconstructions of CETP, free and HDL-bound, were obtained by single-particle techniques. In addition, we used inhibitory CETP antibodies to identify the regions of CETP that interact with HDL and LDL. Finally molecular dynamics (MD) simulation was used to assess the molecular mobility of CETP and predict the likely conformational changes that are associated with lipid transfer. We discovered that CETP bridges a ternary complex with its N-terminal β-barrel domain penetrating into HDL and its C-terminal domain interacting with LDL or VLDL. In our mechanistic model, the CETP lipoprotein-interacting regions, which are highly mobile, form pores that connect to a hydrophobic central cavity, thereby forming a tunnel for transfer of neutral lipids from donor to acceptor lipoproteins. These new insights into CETP transfer provide a molecular basis for analyzing mechanisms for CETP inhibition.


2011 ◽  
Vol 131 (12) ◽  
pp. 2625-2629 ◽  
Author(s):  
Erdem Uzun ◽  
Yasemin Yarar ◽  
A. Necmeddin Yazici

2010 ◽  
Vol 2010 ◽  
pp. 1-7
Author(s):  
Yao Yu ◽  
Wu Hongtao

The kinematics analysis method of a novel 3-DOF wind tunnel mechanism based on cable-driven parallel mechanism is provided. Rodrigues' parameters are applied to express the transformation matrix of the wire-driven mechanism in the paper. The analytical forward kinematics model is described as three quadratic equations using three Rodridgues' parameters based on the fundamental theory of parallel mechanism. Elimination method is used to remove two of the variables, so that an eighth-order polynomial with one variable is derived. From the equation, the eight sets of Rodridgues' parameters and corresponding Euler angles for the forward kinematical problem can be obtained. In the end, numerical example of both forward and inverse kinematics is included to demonstrate the presented forward-kinematics solution method. The numerical results show that the method for the position analysis of this mechanism is effective.


Sign in / Sign up

Export Citation Format

Share Document