The Role of Mesoscale Eddies in the Rectification of the Southern Ocean Response to Climate Change

2010 ◽  
Vol 40 (7) ◽  
pp. 1539-1557 ◽  
Author(s):  
Riccardo Farneti ◽  
Thomas L. Delworth ◽  
Anthony J. Rosati ◽  
Stephen M. Griffies ◽  
Fanrong Zeng

Abstract Simulations from a fine-resolution global coupled model, the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.4 (CM2.4), are presented, and the results are compared with a coarse version of the same coupled model, CM2.1, under idealized climate change scenarios. A particular focus is given to the dynamical response of the Southern Ocean and the role played by the eddies—parameterized or permitted—in setting the residual circulation and meridional density structure. Compared to the case in which eddies are parameterized and consistent with recent observational and idealized modeling studies, the eddy-permitting integrations of CM2.4 show that eddy activity is greatly energized with increasing mechanical and buoyancy forcings, buffering the ocean to atmospheric changes, and the magnitude of the residual oceanic circulation response is thus greatly reduced. Although compensation is far from being perfect, changes in poleward eddy fluxes partially compensate for the enhanced equatorward Ekman transport, leading to weak modifications in local isopycnal slopes, transport by the Antarctic Circumpolar Current, and overturning circulation. Since the presence of active ocean eddy dynamics buffers the oceanic response to atmospheric changes, the associated atmospheric response to those reduced ocean changes is also weakened. Further, it is hypothesized that present numerical approaches for the parameterization of eddy-induced transports could be too restrictive and prevent coarse-resolution models from faithfully representing the eddy response to variability and change in the forcing fields.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


2021 ◽  
Vol 11 (5) ◽  
pp. 2403
Author(s):  
Daniel Ziche ◽  
Winfried Riek ◽  
Alexander Russ ◽  
Rainer Hentschel ◽  
Jan Martin

To develop measures to reduce the vulnerability of forests to drought, it is necessary to estimate specific water balances in sites and to estimate their development with climate change scenarios. We quantified the water balance of seven forest monitoring sites in northeast Germany for the historical time period 1961–2019, and for climate change projections for the time period 2010–2100. We used the LWF-BROOK90 hydrological model forced with historical data, and bias-adjusted data from two models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) downscaled with regional climate models under the representative concentration pathways (RCPs) 2.6 and 8.5. Site-specific monitoring data were used to give a realistic model input and to calibrate and validate the model. The results revealed significant trends (evapotranspiration, dry days (actual/potential transpiration < 0.7)) toward drier conditions within the historical time period and demonstrate the extreme conditions of 2018 and 2019. Under RCP8.5, both models simulate an increase in evapotranspiration and dry days. The response of precipitation to climate change is ambiguous, with increasing precipitation with one model. Under RCP2.6, both models do not reveal an increase in drought in 2071–2100 compared to 1990–2019. The current temperature increase fits RCP8.5 simulations, suggesting that this scenario is more realistic than RCP2.6.


2015 ◽  
Vol 8 (7) ◽  
pp. 1943-1954 ◽  
Author(s):  
D. R. Feldman ◽  
W. D. Collins ◽  
J. L. Paige

Abstract. Top-of-atmosphere (TOA) spectrally resolved shortwave reflectances and long-wave radiances describe the response of the Earth's surface and atmosphere to feedback processes and human-induced forcings. In order to evaluate proposed long-duration spectral measurements, we have projected 21st Century changes from the Community Climate System Model (CCSM3.0) conducted for the Intergovernmental Panel on Climate Change (IPCC) A2 Emissions Scenario onto shortwave reflectance spectra from 300 to 2500 nm and long-wave radiance spectra from 2000 to 200 cm−1 at 8 nm and 1 cm−1 resolution, respectively. The radiative transfer calculations have been rigorously validated against published standards and produce complementary signals describing the climate system forcings and feedbacks. Additional demonstration experiments were performed with the Model for Interdisciplinary Research on Climate (MIROC5) and Hadley Centre Global Environment Model version 2 Earth System (HadGEM2-ES) models for the Representative Concentration Pathway 8.5 (RCP8.5) scenario. The calculations contain readily distinguishable signatures of low clouds, snow/ice, aerosols, temperature gradients, and water vapour distributions. The goal of this effort is to understand both how climate change alters reflected solar and emitted infrared spectra of the Earth and determine whether spectral measurements enhance our detection and attribution of climate change. This effort also presents a path forward to understand the characteristics of hyperspectral observational records needed to confront models and inline instrument simulation. Such simulation will enable a diverse set of comparisons between model results from coupled model intercomparisons and existing and proposed satellite instrument measurement systems.


2008 ◽  
Vol 5 (3) ◽  
pp. 847-864 ◽  
Author(s):  
P. W. Boyd ◽  
S. C. Doney ◽  
R. Strzepek ◽  
J. Dusenberry ◽  
K. Lindsay ◽  
...  

Abstract. Concurrent changes in ocean chemical and physical properties influence phytoplankton dynamics via alterations in carbonate chemistry, nutrient and trace metal inventories and upper ocean light environment. Using a fully coupled, global carbon-climate model (Climate System Model 1.4-carbon), we quantify anthropogenic climate change relative to the background natural interannual variability for the Southern Ocean over the period 2000 and 2100. Model results are interpreted using our understanding of the environmental control of phytoplankton growth rates – leading to two major findings. Firstly, comparison with results from phytoplankton perturbation experiments, in which environmental properties have been altered for key species (e.g., bloom formers), indicates that the predicted rates of change in oceanic properties over the next few decades are too subtle to be represented experimentally at present. Secondly, the rate of secular climate change will not exceed background natural variability, on seasonal to interannual time-scales, for at least several decades – which may not provide the prevailing conditions of change, i.e. constancy, needed for phytoplankton adaptation. Taken together, the relatively subtle environmental changes, due to climate change, may result in adaptation by resident phytoplankton, but not for several decades due to the confounding effects of climate variability. This presents major challenges for the detection and attribution of climate change effects on Southern Ocean phytoplankton. We advocate the development of multi-faceted tests/metrics that will reflect the relative plasticity of different phytoplankton functional groups and/or species to respond to changing ocean conditions.


2021 ◽  
Author(s):  
Fabian Lehner ◽  
Imran Nadeem ◽  
Herbert Formayer

Abstract. Daily meteorological data such as temperature or precipitation from climate models is needed for many climate impact studies, e.g. in hydrology or agriculture but direct model output can contain large systematic errors. Thus, statistical bias adjustment is applied to correct climate model outputs. Here we review existing statistical bias adjustment methods and their shortcomings, and present a method which we call EQA (Empirical Quantile Adjustment), a development of the methods EDCDFm and PresRAT. We then test it in comparison to two existing methods using real and artificially created daily temperature and precipitation data for Austria. We compare the performance of the three methods in terms of the following demands: (1): The model data should match the climatological means of the observational data in the historical period. (2): The long-term climatological trends of means (climate change signal), either defined as difference or as ratio, should not be altered during bias adjustment, and (3): Even models with too few wet days (precipitation above 0.1 mm) should be corrected accurately, so that the wet day frequency is conserved. EQA fulfills (1) almost exactly and (2) at least for temperature. For precipitation, an additional correction included in EQA assures that the climate change signal is conserved, and for (3), we apply another additional algorithm to add precipitation days.


2021 ◽  
Author(s):  
Vassil Roussenov ◽  
Ric Williams ◽  
Anna Katavouta

&lt;p&gt;Projected changes in ocean heat and carbon storage are assessed in terms of the added and &amp;#8232;redistributed tracer using a transport-based framework for 6 CMIP5 Earth system models following an annual 1% rise in atmospheric &amp;#8232;CO2. Heat and carbon budgets for the added and redistributed tracer are used to compare the reasons for the relatively-reduced storage of heat and carbon within the Southern Ocean. Here the added tracer takes &amp;#8232; account of the net tracer source and the advection of the added tracer, while the redistributed tracer takes account of the time-varying advection of the pre-industrial tracer &amp;#160;distribution. The added heat and carbon are nearly always positive over the Southern Ocean with the net source acting to supply tracer. However, there is a relatively-reduced local storage of heat and carbon in the Southern Ocean due to the passive northward transport of heat and carbon by the overturning, which is augmented by a passive northward carbon transport for the gyre circulation. In contrast, the redistributed heat is usually negative and the redistributed carbon is positive over the Southern Ocean due to the transport effects of a strengthening residual circulation and the opposing gradients in the pre-industrial temperature and &amp;#8232;carbon. Hence, climate projections for the Southern Ocean are expected to have heat anomalies of a variable sign and carbon anomalies of a consistently positive &amp;#160;sign, since the effects of added and redistribution heat are opposing in sign, while the effects of added and redistributed &amp;#8232;carbon reinforce each other.&amp;#8232;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2019 ◽  
Vol 11 (4) ◽  
pp. 1370-1382 ◽  
Author(s):  
Asma Hanif ◽  
Ashwin Dhanasekar ◽  
Anthony Keene ◽  
Huishu Li ◽  
Kenneth Carlson

Abstract Projected climate change impacts on the hydrological regime and corresponding flood risks were examined for the years 2030 (near-term) and 2050 (long-term), under representative concentration pathways (RCP) 4.5 (moderate) and 8.5 (high) emission scenarios. The United States Army Corps of Engineers' (USACE) Hydrologic Engineering Center's Hydrologic Modeling System was used to simulate the complete hydrologic processes of the various dendritic watershed systems and USACEs' Hydrologic Engineering Center's River Analysis System hydraulic model was used for the two-dimensional unsteady flow flood calculations. Climate projections are based on recent global climate model simulations developed for the International Panel on Climate Change, Coupled Model Inter-comparison Project Phase 5. Hydrographs for frequent (high-recurrence interval) storms were derived from 30-year historical daily precipitation data and decadal projections for both time frames and RCP scenarios. Since the climate projections for each scenario only represented ten years of data, 100-year or 500-year storms cannot be derived. Hence, this novel approach of identifying frequent storms is used as an indicator to compare across the various time frames and climate scenarios. Hydrographs were used to generate inundation maps and results are used to identify vulnerabilities and formulate adaptation strategies to flooding at 43 locations worldwide.


Author(s):  
Kerry H. Cook

Accurate projections of climate change under increasing atmospheric greenhouse gas levels are needed to evaluate the environmental cost of anthropogenic emissions, and to guide mitigation efforts. These projections are nowhere more important than Africa, with its high dependence on rain-fed agriculture and, in many regions, limited resources for adaptation. Climate models provide our best method for climate prediction but there are uncertainties in projections, especially on regional space scale. In Africa, limitations of observational networks add to this uncertainty since a crucial step in improving model projections is comparisons with observations. Exceeding uncertainties associated with climate model simulation are uncertainties due to projections of future emissions of CO2 and other greenhouse gases. Humanity’s choices in emissions pathways will have profound effects on climate, especially after the mid-century.The African Sahel is a transition zone characterized by strong meridional precipitation and temperature gradients. Over West Africa, the Sahel marks the northernmost extent of the West African monsoon system. The region’s climate is known to be sensitive to sea surface temperatures, both regional and global, as well as to land surface conditions. Increasing atmospheric greenhouse gases are already causing amplified warming over the Sahara Desert and, consequently, increased rainfall in parts of the Sahel. Climate model projections indicate that much of this increased rainfall will be delivered in the form of more intense storm systems.The complicated and highly regional precipitation regimes of East Africa present a challenge for climate modeling. Within roughly 5º of latitude of the equator, rainfall is delivered in two seasons—the long rains in the spring, and the short rains in the fall. Regional climate model projections suggest that the long rains will weaken under greenhouse gas forcing, and the short rains season will extend farther into the winter months. Observations indicate that the long rains are already weakening.Changes in seasonal rainfall over parts of subtropical southern Africa are observed, with repercussions and challenges for agriculture and water availability. Some elements of these observed changes are captured in model simulations of greenhouse gas-induced climate change, especially an early demise of the rainy season. The projected changes are quite regional, however, and more high-resolution study is needed. In addition, there has been very limited study of climate change in the Congo Basin and across northern Africa. Continued efforts to understand and predict climate using higher-resolution simulation must be sustained to better understand observed and projected changes in the physical processes that support African precipitation systems as well as the teleconnections that communicate remote forcings into the continent.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 530 ◽  
Author(s):  
Gonzalo Vargas-Piedra ◽  
Ricardo David Valdez-Cepeda ◽  
Armando López-Santos ◽  
Arnoldo Flores-Hernández ◽  
Nathalie S. Hernández-Quiroz ◽  
...  

Candelilla (Euphorbia antisyphilitica Zucc.) is a shrub species distributed throughout the Chihuahuan Desert in northern Mexico and southern of the United States of America. Candelilla has an economic importance due to natural wax it produces. The economic importance and the intense harvest of the wax from candelilla seems to gradually reduce the natural populations of this species. The essence of this research was to project the potential distribution of candelilla populations under different climate change scenarios in its natural distribution area in North America. We created a spatial database with points of candelilla presence, according to the Global Biodiversity Information Facility (GBIF). A spatial analysis to predict the potential distribution of the species using Maxent software was performed. Thirteen of 19 variables from the WorldClim database were used for two scenarios of representative concentration pathways (RCPs) (4.5 as a conservative and 8.5 as extreme). We used climate projections from three global climate models (GCMs) (Max Planck institute, the Geophysical Fluid Dynamics Laboratory and the Met Office Hadley), each simulating the two scenarios. The final predicted distribution areas were classified in five on-site possible candelilla habitat suitability categories: none (< 19%), low (20–38%), medium (39–57%), high (58–76%) and very high (> 77%). According to the area under the curve (0.970), the models and scenarios used showed an adequate fit to project the current and future distribution of candelilla. The variable that contributed the most in the three GCMs and the two RCPs was the mean temperature of the coldest quarter with an influence of 45.7% (Jackknife test). The candelilla’s distribution area for North America was predicted as approximately 19.1 million hectares under the current conditions for the high habitat suitability; however, the projection for the next fifty years is not promising because the GCMs projected a reduction of more than 6.9 million hectares using either the conservative or extreme scenarios. The results are useful for conservation of the species in the area with vulnerable wild populations, as well as for the selection of new sites suitable for the species growth and cultivation while facing climate change.


Sign in / Sign up

Export Citation Format

Share Document