The Global Atmospheric Circulation Response to Tropical Diabatic Heating Associated with the Madden–Julian Oscillation during Northern Winter

2012 ◽  
Vol 69 (1) ◽  
pp. 79-96 ◽  
Author(s):  
Kyong-Hwan Seo ◽  
Seok-Woo Son

Abstract The detailed dynamical mechanisms of the upper-tropospheric circulation response to the Madden–Julian oscillation (MJO) convection are examined by integrating a primitive equation model. A series of initial-value calculations with the climatological boreal winter background flow forced by the MJO-like thermal forcing successfully capture the key aspects of the observed circulation response to the MJO convection. This suggests that a large fraction of MJO-related circulation anomalies are direct responses to tropical heating in both the tropics and extratropics and can be largely explained by linear dynamics. It is found that MJO-like dipole heatings not only intensify tropical upper-tropospheric anomalies but also weaken them at certain regions because of the interaction between equatorial Kelvin and Rossby waves. The Rossby wave train primarily excited by horizontal divergence of upper-level perturbation flow propagates northeastward and then heads back to the equator. In this way, Rossby wave activity once generated over the subtropical Indian Ocean tends to enhance the equatorial upper-tropospheric anomalies over the tropical Atlantic and West Africa that have already been created by the zonally propagating equatorial Rossby and Kelvin waves. A ray path tracing reveals that a successive downstream development of Rossby wave train mostly results from the large-scale waves with zonal wavenumbers 2–3 in the Northern Hemisphere and 3–5 in the Southern Hemisphere. The sensitivity tests show that the overall results are quite robust. It is found, however, that the detailed circulation response to the MJO-like forcing is somewhat sensitive to the background flow. This suggests that MJO-related circulation anomalies may have nonnegligible long-term variability and change as background flow varies.

2021 ◽  
Vol 34 (1) ◽  
pp. 397-414
Author(s):  
Guosen Chen

AbstractA recent study has revealed that the Madden–Julian oscillation (MJO) during boreal winter exhibits diverse propagation patterns that consist of four archetypes: standing MJO, jumping MJO, slow eastward propagating MJO, and fast eastward propagating MJO. This study has explored the diversity of teleconnection associated with these four MJO groups. The results reveal that each MJO group corresponds to distinct global teleconnections, manifested as diverse upper-tropospheric Rossby wave train patterns. Overall, the teleconnections in the fast and slow MJO are similar to those in the canonical MJO constructed by the real-time multivariate MJO (RMM) indices, while the teleconnections in the jumping and standing MJO generally lose similarities to those in the canonical MJO. The causes of this diversity are investigated using a linearized potential vorticity equation. The various MJO tropical heating patterns in different MJO groups are the main cause of the diverse MJO teleconnections, as they induce assorted upper-level divergent flows that act as Rossby-wave sources through advecting the background potential vorticity. The variation of the Asian jet could affect the teleconnections over the Pacific jet exit region, but it plays an insignificant role in causing the diversity of global teleconnections. The numerical investigation with a linear baroclinic model shows that the teleconnections can be interpreted as linear responses to the MJO’s diabatic heating to various degrees for different MJO groups, with the fast and slow MJO having higher linear skill than the jumping and standing MJO. The results have broad implications in the MJO’s tropical–extratropical interactions and the associated impacts on global weather and climate.


2006 ◽  
Vol 63 (5) ◽  
pp. 1377-1389 ◽  
Author(s):  
Tim Li ◽  
Bing Fu

Abstract The structure and evolution characteristics of Rossby wave trains induced by tropical cyclone (TC) energy dispersion are revealed based on the Quick Scatterometer (QuikSCAT) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data. Among 34 cyclogenesis cases analyzed in the western North Pacific during 2000–01 typhoon seasons, six cases are associated with the Rossby wave energy dispersion of a preexisting TC. The wave trains are oriented in a northwest–southeast direction, with alternating cyclonic and anticyclonic vorticity circulation. A typical wavelength of the wave train is about 2500 km. The TC genesis is observed in the cyclonic circulation region of the wave train, possibly through a scale contraction process. The satellite data analyses reveal that not all TCs have a Rossby wave train in their wakes. The occurrence of the Rossby wave train depends to a certain extent on the TC intensity and the background flow. Whether or not a Rossby wave train can finally lead to cyclogenesis depends on large-scale dynamic and thermodynamic conditions related to both the change of the seasonal mean state and the phase of the tropical intraseasonal oscillation. Stronger low-level convergence and cyclonic vorticity, weaker vertical shear, and greater midtropospheric moisture are among the favorable large-scale conditions. The rebuilding process of a conditional unstable stratification is important in regulating the frequency of TC genesis.


2011 ◽  
Vol 68 (5) ◽  
pp. 954-963 ◽  
Author(s):  
Tim Woollings ◽  
Joaquim G. Pinto ◽  
João A. Santos

Abstract The development of a particular wintertime atmospheric circulation regime over the North Atlantic, comprising a northward shift of the North Atlantic eddy-driven jet stream and an associated strong and persistent ridge in the subtropics, is investigated. Several different methods of analysis are combined to describe the temporal evolution of the events and relate it to shifts in the phase of the North Atlantic Oscillation and East Atlantic pattern. First, the authors identify a close relationship between northward shifts of the eddy-driven jet, the establishment and maintenance of strong and persistent ridges in the subtropics, and the occurrence of upper-tropospheric anticyclonic Rossby wave breaking over Iberia. Clear tropospheric precursors are evident prior to the development of the regime, suggesting a preconditioning of the Atlantic jet stream and an upstream influence via a large-scale Rossby wave train from the North Pacific. Transient (2–6 days) eddy forcing plays a dual role, contributing to both the initiation and then the maintenance of the circulation anomalies. During the regime there is enhanced occurrence of anticyclonic Rossby wave breaking, which may be described as low-latitude blocking-like events over the southeastern North Atlantic. A strong ridge is already established at the time of wave-breaking onset, suggesting that the role of wave-breaking events is to amplify the circulation anomalies rather than to initiate them. Wave breaking also seems to enhance the persistence, since it is unlikely that a persistent ridge event occurs without being also accompanied by wave breaking.


2011 ◽  
Vol 24 (1) ◽  
pp. 124-139 ◽  
Author(s):  
Jeffrey Shaman ◽  
Eli Tziperman

Abstract Numerous studies have demonstrated statistical associations between the El Niño–Southern Oscillation (ENSO) and precipitation in the Mediterranean basin. The dynamical bases for these teleconnections have yet to be fully identified. Here, observational analyses and model simulations are used to show how ENSO variability affects rainfall over southwestern Europe (Iberia, Southern France, and Italy). A precipitation index for the region, named southwestern European Precipitation (SWEP), is used. The observational analyses show that ENSO modulates SWEP during the September–December wet season. These precipitation anomalies are associated with changes in large-scale atmospheric fields to the west of Iberia that alter low-level westerly winds and onshore moisture advection from the Atlantic. The vorticity anomalies associated with SWEP variability are linked to ENSO through a stationary barotropic Rossby wave train that emanates from the eastern equatorial Pacific and propagates eastward to the Atlantic and Mediterranean. Solutions of the linearized barotropic vorticity equation produce such eastward-propagating Rossby waves with trajectories that traverse the region of observed ENSO-related anomalies. In addition, these linearized barotropic vorticity equation solutions produce a dipole of positive and negative vorticity anomalies to the west of Iberia that matches observations and is consistent with the onshore advection of moisture. Thus, interannual variability of fall and early winter precipitation over southwestern Europe is linked to ENSO variability in the eastern Pacific via an eastward-propagating atmospheric stationary barotropic Rossby wave train.


2008 ◽  
Vol 65 (7) ◽  
pp. 2272-2289 ◽  
Author(s):  
Xuyang Ge ◽  
Tim Li ◽  
Yuqing Wang ◽  
Melinda S. Peng

Abstract The three-dimensional (3D) Rossby wave energy dispersion of a tropical cyclone (TC) is studied using a baroclinic primitive equation model. The model is initialized with a symmetric vortex on a beta plane in an environment at rest. The vortex intensifies while becoming asymmetric and moving northwestward because of the beta effect. A synoptic-scale wave train forms in its wake a few days later. The energy-dispersion-induced Rossby wave train has a noticeable baroclinic structure with alternating cyclonic–anticyclonic–cyclonic (anticyclonic–cyclonic–anticyclonic) circulations in the lower (upper) troposphere. A key feature associated with the 3D wave train development is a downward propagation of the relative vorticity and kinetic energy. Because of the vertical differential inertial stability, the upper-level wave train develops faster than the lower-level counterpart. The upper anticyclonic circulation rapidly induces an intense asymmetric outflow jet in the southeast quadrant, and then further influences the lower-level Rossby wave train. On one hand, the outflow jet exerts an indirect effect on the lower-level wave train strength through changing TC intensity and structure. On the other hand, it triggers downward energy propagation that further enhances the lower-level Rossby wave train. A sudden removal of the diabatic heating may initially accelerate the energy dispersion through the increase of the radius of maximum wind and the reduction of the lower-level inflow. The latter may modulate the group velocity of the Rossby wave train through the Doppler shift effect. The 3D numerical results illustrate more complicated Rossby wave energy dispersion characteristics than 2D barotropic dynamics.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 175 ◽  
Author(s):  
Lei Song ◽  
Renguang Wu

Previous studies have revealed the relationship between the Madden–Julian oscillation (MJO) and the Arctic Oscillation (AO). The MJO phase 2/3 is followed by the positive AO phase, and the MJO phase 6/7 is followed by the negative AO phase. This study reveals that the MJO phase 6/7–AO connection is modulated by the Quasi-Biennial Oscillation (QBO) through both tropospheric and stratospheric pathways during boreal winter. The MJO 2/3 phase and AO relationship is favored in both QBO easterly (QBOE) and westerly (QBOW) years because of the MJO-triggered tropospheric Rossby wave train from the tropics toward the polar region. The AO following the MJO 6/7 phase shifts to negative in QBOW years, but the MJO–AO connection diminishes in QBOE years. In QBOW years, the Asian-Pacific jet is enhanced, leading to more evident poleward propagation of tropospheric Rossby wave train, which contributes to the tropospheric pathway of the AO–MJO 6/7 connection. Besides, the enhanced Asian-Pacific jet in QBOW years is favorable for vertical propagation of planetary waves into the stratosphere in MJO phase 6/7, leading to negative AO, which indicates the stratospheric pathway of the AO–MJO 6/7 connection.


Climate ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Patrick Haertel

The Madden Julian Oscillation (MJO) is a large-scale convective and circulation system that propagates slowly eastward over the equatorial Indian and Western Pacific Oceans. Multiple, conflicting theories describe its growth and propagation, most involving equatorial Kelvin and/or Rossby waves. This study partitions MJO circulations into Kelvin and Rossby wave components for three sets of data: (1) a modeled linear response to an MJO-like heating; (2) a composite MJO based on atmospheric sounding data; and (3) a composite MJO based on data from a Lagrangian atmospheric model. The first dataset has a simple dynamical interpretation, the second provides a realistic view of MJO circulations, and the third occurs in a laboratory supporting controlled experiments. In all three of the datasets, the propagation of Kelvin waves is similar, suggesting that the dynamics of Kelvin wave circulations in the MJO can be captured by a system of equations linearized about a basic state of rest. In contrast, the Rossby wave component of the observed MJO’s circulation differs substantially from that in our linear model, with Rossby gyres moving eastward along with the heating and migrating poleward relative to their linear counterparts. These results support the use of a system of equations linearized about a basic state of rest for the Kelvin wave component of MJO circulation, but they question its use for the Rossby wave component.


2009 ◽  
Vol 137 (7) ◽  
pp. 2250-2262 ◽  
Author(s):  
Hai Lin ◽  
Gilbert Brunet

Using the homogenized Canadian historical daily surface air temperature (SAT) for 210 relatively evenly distributed stations across Canada, the lagged composites and probability of the above- and below-normal SAT in Canada for different phases of the Madden–Julian oscillation (MJO) in the winter season are analyzed. Significant positive SAT anomalies and high probability of above-normal events in the central and eastern Canada are found 5–15 days following MJO phase 3, which corresponds to an enhanced precipitation over the Indian Ocean and Maritime Continent and a reduced convective activity near the tropical central Pacific. On the other hand, a positive SAT anomaly appears over a large part of northern and northeastern Canada about 5–15 days after the MJO is detected in phase 7. An analysis of the evolution of the 500-hPa geopotential height and sea level pressure anomalies indicates that the Canadian SAT anomaly is a result of a Rossby wave train associated with the tropical convection anomaly of the MJO. Hence, the MJO phase provides useful information for the extended-range forecast of Canadian winter surface air temperature. This result also provides an important reference for numerical model verifications.


2005 ◽  
Vol 62 (12) ◽  
pp. 4423-4440 ◽  
Author(s):  
Koutarou Takaya ◽  
Hisashi Nakamura

Abstract Mechanisms of intraseasonal amplification of the Siberian high are investigated on the basis of composite anomaly evolution for its strongest events at each of the grid points over Siberia. At each location, the amplification of the surface high is associated with formation of a blocking ridge in the upper troposphere. Over central and western Siberia, what may be called “wave-train (Atlantic-origin)” type is common, where a blocking ridge forms as a component of a quasi-stationary Rossby wave train propagating across the Eurasian continent. A cold air outbreak follows once anomalous surface cold air reaches the northeastern slope of the Tibetan Plateau. It is found through the potential vorticity (PV) inversion technique that interaction between the upper-level stationary Rossby wave train and preexisting surface cold anomalies is essential for the strong amplification of the surface high. Upper-level PV anomalies associated with the wave train reinforce the cold anticyclonic anomalies at the surface by inducing anomalous cold advection that counteracts the tendency of the thermal anomalies themselves to migrate eastward as surface thermal Rossby waves. The surface cold anomalies thus intensified, in turn, act to induce anomalous vorticity advection aloft that reinforces the blocking ridge and cyclonic anomalies downstream of it that constitute the propagating wave train. The baroclinic development of the anomalies through this vertical coupling is manifested as a significant upward flux of wave activity emanating from the surface cold anomalies, which may be interpreted as dissipative destabilization of the incoming external Rossby waves.


2020 ◽  
Vol 33 (1) ◽  
pp. 365-389 ◽  
Author(s):  
Lon L. Hood ◽  
Malori A. Redman ◽  
Wes L. Johnson ◽  
Thomas J. Galarneau

AbstractThe tropical Madden–Julian oscillation (MJO) excites a northward propagating Rossby wave train that largely determines the extratropical surface weather consequences of the MJO. Previous work has demonstrated a significant influence of the tropospheric El Niño–Southern Oscillation (ENSO) on the characteristics of this wave train. Here, composite analyses of ERA-Interim sea level pressure (SLP) and surface air temperature (SAT) data during the extended northern winter season are performed to investigate the additional role of stratospheric forcings [the quasi-biennial oscillation (QBO) and the 11-yr solar cycle] in modifying the wave train and its consequences. MJO phase composites of 20–100-day filtered data for the two QBO phases show that, similar to the cool phase of ENSO, the easterly phase of the QBO (QBOE) produces a stronger wave train and associated modulation of SLP and SAT anomalies. In particular, during MJO phases 5–7, positive SLP and negative SAT anomalies in the North Atlantic/Eurasian sector are enhanced during QBOE relative to the westerly phase of the QBO (QBOW). The opposite occurs during the earliest MJO phases. SAT anomalies over eastern North America are also more strongly modulated during QBOE. Although less certain because of the short data record, there is some evidence that the minimum phase of the solar cycle (SMIN) produces a similar increased modulation of SLP and SAT anomalies. The strongest modulations of SLP and SAT anomalies are produced when two or more of the forcings are superposed (e.g., QBOE/cool ENSO, SMIN/QBOE, etc.).


Sign in / Sign up

Export Citation Format

Share Document