scholarly journals Profiling Float Observations of the Upper Ocean under Sea Ice off the Wilkes Land Coast of Antarctica

2011 ◽  
Vol 41 (6) ◽  
pp. 1102-1115 ◽  
Author(s):  
Annie P. S. Wong ◽  
Stephen C. Riser

Abstract Multiyear under-ice temperature and salinity data collected by profiling floats are used to study the upper ocean near the Wilkes Land coast of Antarctica. The study region is in the seasonal sea ice zone near the southern terminus of the Antarctic Circumpolar Current. The profiling floats were equipped with an ice-avoidance algorithm and had a survival rate of 74% after 2.5 yr in the ocean. The data show that, in this part of Antarctica, the rate of sea ice decay exceeds the rate of sea ice growth. During the sea ice growth period, the water column is weakly stratified because of brine rejection and is only marginally stable. The average winter mixed layer temperature is about 0.12°C above the surface freezing point, providing evidence of entrainment of warmer water from the permanent pycnocline. The average mixed layer salinity increases by 0.127 from June to October. A one-dimensional model is used to quantify evolution of the winter mixed layer under a sea ice cover. The local winter entrainment rate is estimated to be 49 ± 11 m over 5 months, supplying a heat flux of 34 ± 8 W m−2 to the base of the mixed layer in winter. Model output gives a thermodynamic sea ice growth of 28 ± 15 cm over the same period. The winter ocean–atmosphere heat loss through leads and sea ice is estimated to be 14–25 W m−2 in this area, which is broadly in line with other winter observations from the East Antarctic region.

Ocean Science ◽  
2011 ◽  
Vol 7 (2) ◽  
pp. 185-202 ◽  
Author(s):  
G. D. Williams ◽  
M. Hindell ◽  
M.-N. Houssais ◽  
T. Tamura ◽  
I. C. Field

Abstract. Southern elephant seals (Mirounga leonina), fitted with Conductivity-Temperature-Depth sensors at Macquarie Island in January 2005 and 2010, collected unique oceanographic observations of the Adélie and George V Land continental shelf (140–148° E) during the summer-fall transition (late February through April). This is a key region of dense shelf water formation from enhanced sea ice growth/brine rejection in the local coastal polynyas. In 2005, two seals occupied the continental shelf break near the grounded icebergs at the northern end of the Mertz Glacier Tongue for several weeks from the end of February. One of the seals migrated west to the Dibble Ice Tongue, apparently utilising the Antarctic Slope Front current near the continental shelf break. In 2010, immediately after that year's calving of the Mertz Glacier Tongue, two seals migrated to the same region but penetrated much further southwest across the Adélie Depression and sampled the Commonwealth Bay polynya from March through April. Here we present observations of the regional oceanography during the summer-fall transition, in particular (i) the zonal distribution of modified Circumpolar Deep Water exchange across the shelf break, (ii) the upper ocean stratification across the Adélie Depression, including alongside iceberg C-28 that calved from the Mertz Glacier and (iii) the convective overturning of the deep remnant seasonal mixed layer in Commonwealth Bay from sea ice growth. Heat and freshwater budgets to 200–300 m are used to estimate the ocean heat content (400→50 MJ m−2), flux (50–200 W m−2 loss) and sea ice growth rates (maximum of 7.5–12.5 cm day−1). Mean seal-derived sea ice growth rates were within the range of satellite-derived estimates from 1992–2007 using ERA-Interim data. We speculate that the continuous foraging by the seals within Commonwealth Bay during the summer/fall transition was due to favorable feeding conditions resulting from the convective overturning of the deep seasonal mixed layer and chlorophyll maximum that is a reported feature of this location.


2014 ◽  
Vol 8 (2) ◽  
pp. 761-783 ◽  
Author(s):  
A. A. Petty ◽  
P. R. Holland ◽  
D. L. Feltham

Abstract. An ocean mixed-layer model has been incorporated into the Los Alamos sea ice model CICE to investigate regional variations in the surface-driven formation of Antarctic shelf waters. This model captures well the expected sea ice thickness distribution, and produces deep (> 500 m) mixed layers in the Weddell and Ross shelf seas each winter. This results in the complete destratification of the water column in deep southern coastal regions leading to high-salinity shelf water (HSSW) formation, and also in some shallower regions (no HSSW formation) of these seas. Shallower mixed layers are produced in the Amundsen and Bellingshausen seas. By deconstructing the surface processes driving the mixed-layer depth evolution, we show that the net salt flux from sea ice growth/melt dominates the evolution of the mixed layer in all regions, with a smaller contribution from the surface heat flux and a negligible input from wind stress. The Weddell and Ross shelf seas receive an annual surplus of mixing energy at the surface; the Amundsen shelf sea energy input in autumn/winter is balanced by energy extraction in spring/summer; and the Bellingshausen shelf sea experiences an annual surface energy deficit, through both a low energy input in autumn/winter and the highest energy loss in spring/summer. An analysis of the sea ice mass balance demonstrates the contrasting mean ice growth, melt and export in each region. The Weddell and Ross shelf seas have the highest annual ice growth, with a large fraction exported northwards each year, whereas the Bellingshausen shelf sea experiences the highest annual ice melt, driven by the advection of ice from the northeast. A linear regression analysis is performed to determine the link between the autumn/winter mixed-layer deepening and several atmospheric variables. The Weddell and Ross shelf seas show stronger spatial correlations (temporal mean – intra-regional variability) between the autumn/winter mixed-layer deepening and several atmospheric variables compared to the Amundsen and Bellingshausen. In contrast, the Amundsen and Bellingshausen shelf seas show stronger temporal correlations (shelf sea mean – interannual variability) between the autumn/winter mixed-layer deepening and several atmospheric variables.


2010 ◽  
Vol 7 (6) ◽  
pp. 1913-1951
Author(s):  
G. D. Williams ◽  
M. Hindell ◽  
M.-N. Houssais ◽  
T. Tamura ◽  
I. C. Field

Abstract. Southern elephant seals (Mirounga leonina), fitted with Conductivity-Temperature-Depth sensors at Macquarie Island in January 2005 and 2010, collected unique oceanographic observations of the Adélie and George V Land continental shelf (140–148° E) during the summer-fall transition (late February through April). This is a key region of dense shelf water formation from enhanced sea ice growth/brine-rejection in the local coastal polynyas. In 2005 two seals occupied the continental shelf break near the grounded icebergs at the northern end of the Mertz Glacier Tongue for nearly two weeks at the onset of sea ice growth. One of the seals migrated north thereafter and the other headed west, possibly utilising the Antarctic Slope Front current near the continental shelf break. In 2010, after that years calving of the Mertz Glacier Tongue, two seals migrated to the same region but penetrated much further southwest across the Adélie Depression and occupied the Commonwealth Bay polynya from March through April. Here we present unique observations of the regional oceanography during the summer-fall transition, in particular (a) the zonal distribution of modified Circumpolar Deep Water exchange across the shelf break, (b) the upper ocean stratification across the Adélie Depression, including alongside iceberg C–28 that calved from the Mertz Glacier and (c) the convective overturning of the deep remnant seasonal mixed layer in Commonwealth Bay from sea ice growth (7.5–12.5 cm s−1). Heat and freshwater budgets to 200–300 m are used to estimate the ocean heat content, heat flux and sea ice growth rates. We speculate that the continuous foraging by the seals within Commonwealth Bay during the summer-fall transition was due to favorable feeding conditions resulting from the convective overturning of the deep seasonal mixed layer and chlorophyll maximum that is a reported feature of this location.


2019 ◽  
Vol 49 (4) ◽  
pp. 1099-1117 ◽  
Author(s):  
Earle A. Wilson ◽  
Stephen C. Riser ◽  
Ethan C. Campbell ◽  
Annie P. S. Wong

AbstractIn this study, under-ice ocean data from profiling floats, instrumented seals, and shipboard casts are used to assess wintertime upper-ocean stability and heat availability in the sea ice–covered Southern Ocean. This analysis reveals that the southern Weddell Sea, which features a weak upper-ocean stratification and relatively strong thermocline, is preconditioned for exceptionally high rates of winter ventilation. This preconditioning also facilitates a strong negative feedback to winter ice growth. Idealized experiments with a 1D ice–ocean model show that the entrainment of heat into the mixed layer of this region can maintain a near-constant ice thickness over much of winter. However, this quasi-equilibrium is attained when the pycnocline is thin and supports a large temperature gradient. We find that the surface stress imparted by a powerful storm may upset this balance and lead to substantial ice melt. This response can be greatly amplified when coincident with anomalous thermocline shoaling. In more strongly stratified regions, such as near the sea ice edge of the major gyres, winter ice growth is weakly limited by the entrainment of heat into the mixed layer. Thus, the thermodynamic coupling between winter sea ice growth and ocean ventilation has significant regional variability. This regionality will influence the response of the Southern Ocean ice–ocean system to future changes in ocean stratification and surface forcing.


Author(s):  
Oscar Schofield ◽  
Michael Brown ◽  
Josh Kohut ◽  
Schuyler Nardelli ◽  
Grace Saba ◽  
...  

The West Antarctic Peninsula (WAP) has experienced significant change over the last 50 years. Using a 24 year spatial time series collected by the Palmer Long Term Ecological Research programme, we assessed long-term patterns in the sea ice, upper mixed layer depth (MLD) and phytoplankton productivity. The number of sea ice days steadily declined from the 1980s until a recent reversal that began in 2008. Results show regional differences between the northern and southern regions sampled during regional ship surveys conducted each austral summer. In the southern WAP, upper ocean MLD has shallowed by a factor of 2. Associated with the shallower mixed layer is enhanced phytoplankton carbon fixation. In the north, significant interannual variability resulted in the mixed layer showing no trended change over time and there was no significant increase in the phytoplankton productivity. Associated with the recent increases in sea ice there has been an increase in the photosynthetic efficiency (chlorophyll a -normalized carbon fixation) in the northern and southern regions of the WAP. We hypothesize the increase in sea ice results in increased micronutrient delivery to the continental shelf which in turn leads to enhanced photosynthetic performance. This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change’.


2016 ◽  
Vol 62 (231) ◽  
pp. 1-17 ◽  
Author(s):  
C. A. MIDDLETON ◽  
C. THOMAS ◽  
A. DE WIT ◽  
J.-L. TISON

ABSTRACTTwo non-invasive optical Schlieren methods have been adapted to visualize brine channel development and convective processes in experimentally grown sea ice obtained when a NaCl aqueous solution is cooled from above in a quasi-two-dimensional Hele–Shaw cell. The two different visualization methods, i.e. traditional and synthetic Schlieren optical imaging, produce high spatial resolution images of transport processes during ice growth, without any external perturbation. These images allow observations of the flow dynamics simultaneously within the ice layer, around the ice/water interface, and in the liquid water layer, revealing connections between the processes occurring within the two phases. Results from these methods show that desalination of the growing ice layer occurs by two concurrent, yet independent, mechanisms: (1) boundary layer convection persisting throughout the ice growth period, with short fingers present just below the ice/water interface, and (2) gravity-driven drainage from the brine channels producing deep penetrating convective streamers, which appear after a given time from the beginning of ice growth. The improved visualization and qualitative characterization of these processes show that Schlieren optical methods have exciting potential applications for future study of convective processes during sea-ice growth.


2013 ◽  
Vol 43 (5) ◽  
pp. 863-883 ◽  
Author(s):  
Ian Fenty ◽  
Patrick Heimbach

Abstract This study investigates the hydrographic processes involved in setting the maximum wintertime sea ice (SI) extent in the Labrador Sea and Baffin Bay. The analysis is based on an ocean and sea ice state estimate covering the summer-to-summer 1996/97 annual cycle. The estimate is a synthesis of in situ and satellite hydrographic and ice data with a regional coupled ⅓° ocean–sea ice model. SI advective processes are first demonstrated to be required to reproduce the observed ice extent. With advection, the marginal ice zone (MIZ) location stabilizes where ice melt balances ice mass convergence, a quasi-equilibrium condition achieved via the convergence of warm subtropical-origin subsurface waters into the mixed layer seaward of the MIZ. An analysis of ocean surface buoyancy fluxes reveals a critical role of low-salinity upper ocean (100 m) anomalies for the advancement of SI seaward of the Arctic Water–Irminger Water Thermohaline Front. Anomalous low-salinity waters slow the rate of buoyancy loss–driven mixed layer deepening, shielding an advancing SI pack from the warm subsurface waters, and are conducive to a positive surface meltwater stabilization enhancement (MESEM) feedback driven by SI meltwater release. The low-salinity upper-ocean hydrographic conditions in which the MESEM efficiently operates are termed sea ice–preconditioned waters (SIPW). The SI extent seaward of the Thermohaline Front is shown to closely correspond to the distribution of SIPW. The analysis of two additional state estimates (1992/93, 2003/04) suggests that interannual hydrographic variability provides a first-order explanation for SI maximum extent anomalies in the region.


2012 ◽  
Vol 9 (4) ◽  
pp. 2621-2677 ◽  
Author(s):  
M. Korhonen ◽  
B. Rudels ◽  
M. Marnela ◽  
A. Wisotzki ◽  
J. Zhao

Abstract. The Arctic Ocean gains freshwater mainly through river discharge, precipitation and the inflowing low salinity waters from the Pacific Ocean. In addition the recent reduction in sea ice volume is likely to influence the surface salinity and thus contribute to the freshwater content in the upper ocean. The present day freshwater storage in the Arctic Ocean appears to be sufficient to maintain the upper ocean stratification and to protect the sea ice from the deep ocean heat content. The recent freshening has not, despite the established strong stratification, been able to restrain the accelerating ice loss and other possible heat sources besides the Atlantic Water, such as the waters advecting from the Pacific Ocean and the solar insolation warming the Polar Mixed Layer, are investigated. Since the ongoing freshening, oceanic heat sources and the sea ice melt are closely related, this study, based on hydrographic observations, attempts to examine the ongoing variability in time and space in relation to these three properties. The largest time and space variability of freshwater content occurs in the Polar Mixed Layer and the upper halocline. The freshening of the upper ocean during the 2000s is ubiquitous in the Arctic Ocean although the most substantial increase occurs in the Canada Basin where the freshwater is accumulating in the thickening upper halocline. Whereas the salinity of the upper halocline is nearly constant, the freshwater content in the Polar Mixed Layer is increasing due to decreasing salinity. The decrease in salinity is likely to result from the recent changes in ice formation and melting. In contrast, in the Eurasian Basin where the seasonal ice melt has remained rather modest, the freshening of both the Polar Mixed Layer and the upper halocline is mainly of advective origin. While the warming of the Atlantic inflow was widespread in the Arctic Ocean during the 1990s, the warm and saline inflow events in the early 2000s appear to circulate mainly in the Nansen Basin. Nevertheless, even in the Nansen Basin the seasonal ice melt appears independent of the continuously increasing heat content in the Atlantic layer. As no other oceanic heat sources can be identified in the upper layers, it is likely that increased absorption of solar energy has been causing the ice melt prior to the observations.


2004 ◽  
Vol 24 (6) ◽  
pp. 643-657 ◽  
Author(s):  
Genta Mizuta ◽  
Kay I. Ohshima ◽  
Yasushi Fukamachi ◽  
Motoyo Itoh ◽  
Masaaki Wakatsuchi

2007 ◽  
Vol 20 (11) ◽  
pp. 2515-2529 ◽  
Author(s):  
Jinlun Zhang

Abstract Estimates of sea ice extent based on satellite observations show an increasing Antarctic sea ice cover from 1979 to 2004 even though in situ observations show a prevailing warming trend in both the atmosphere and the ocean. This riddle is explored here using a global multicategory thickness and enthalpy distribution sea ice model coupled to an ocean model. Forced by the NCEP–NCAR reanalysis data, the model simulates an increase of 0.20 × 1012 m3 yr−1 (1.0% yr−1) in total Antarctic sea ice volume and 0.084 × 1012 m2 yr−1 (0.6% yr−1) in sea ice extent from 1979 to 2004 when the satellite observations show an increase of 0.027 × 1012 m2 yr−1 (0.2% yr−1) in sea ice extent during the same period. The model shows that an increase in surface air temperature and downward longwave radiation results in an increase in the upper-ocean temperature and a decrease in sea ice growth, leading to a decrease in salt rejection from ice, in the upper-ocean salinity, and in the upper-ocean density. The reduced salt rejection and upper-ocean density and the enhanced thermohaline stratification tend to suppress convective overturning, leading to a decrease in the upward ocean heat transport and the ocean heat flux available to melt sea ice. The ice melting from ocean heat flux decreases faster than the ice growth does in the weakly stratified Southern Ocean, leading to an increase in the net ice production and hence an increase in ice mass. This mechanism is the main reason why the Antarctic sea ice has increased in spite of warming conditions both above and below during the period 1979–2004 and the extended period 1948–2004.


Sign in / Sign up

Export Citation Format

Share Document