The Impact of Cloud Cover on Major League Baseball

2011 ◽  
Vol 3 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Wes P. Kent ◽  
Scott C. Sheridan

Abstract Although it is often suggested that direct sunlight may affect a player’s vision, no published studies have analyzed this interaction. In this research, a variety of statistical tests were utilized to study how baseball variables respond to different cloud cover conditions. Data from more than 35 000 Major League Baseball games, spanning the seasons from 1987 through 2002, were studied. Eleven baseball variables covering batting, pitching, and fielding performance were included. Overall responses were analyzed, as well as individual responses at 21 different stadiums. Home and away team performances were evaluated separately. This study then synthesized the synergistic differences in offensive production, pitching performance, and fielding performance into changes in the “home field advantage.” Offensive production generally declines during clearer-sky daytime games compared to cloudy-sky daytime games, while pitching performance increases as conditions become clearer. Strikeouts show the strongest response in the study, increasing from 5.95 per game during cloudy-sky conditions to 6.40 per game during clear-sky conditions. The number of errors per game increases during clear-sky daytime games compared to cloudy-sky daytime games, while fly outs increase and ground outs decrease between daytime and nighttime games, regardless of the amount of cloud cover. Results at individual stadiums vary, with some stadiums displaying a very strong association between baseball performance and changes in cloud cover, while others display a weak association. All of these impacts affect the home field advantage, with the home team winning 56% of the games played under clear skies compared to 52.3% of the games played under cloudy skies.

After shading a light on the extraterrestrial solar radiation in the chapter 3 it is important to evaluate the global terrestrial solar radiation and its components. The information on terrestrial solar radiation is required in several different forms depending on the kinds of calculations and kind of application that are to be done. Of course, terrestrial solar radiation on the horizontal plane depends on the different weather conditions such as cloud cover, relative humidity, and ambient temperature. Therefore, the impact of the atmosphere on solar radiation should be considered. One of the most important points of terrestrial solar radiation evaluation is its determination during clear sky conditions. Therefore, in this chapter, the equations that determine the air mass basing on available theories are given and the clear sky conditions are introduced with shading a light on the previous work in identifying clear sky conditions. Taking into consideration that, clear sky solar radiation estimation is of great importance for solar tracking, a detailed review of main available models is given in this chapter. As daily, monthly, seasonally, biannually and yearly mean daily solar radiations are required information for designing and installing long term tracking systems, different available methods are commented regarding their applicability for the estimation of solar radiation information in the desired format from the data that are available. An important accent is paid also on the assessment and comparison of monthly mean daily solar radiation estimation models.


2008 ◽  
Vol 8 (2) ◽  
pp. 6501-6537
Author(s):  
A. F. Pazmino ◽  
S. Godin-Beekmann ◽  
E. A. Luccini ◽  
R. D. Piacentini ◽  
E. J. Quel ◽  
...  

Abstract. The variability of total ozone and UV radiation from Total Ozone Mapping Spectrometer (TOMS) measurements is analyzed as a function of polar vortex occurrences over the southern subpolar regions during the 1997–2005 period. The analysis of vortex occurrences showed high interannual variability in the 40° S–60° S latitude band with a longitudinal asymmetry showing the largest frequencies over the 90° W–90° E region. The impact of vortex occurrences on UV radiation and ozone in clear sky conditions was determined from the comparison between the measurements inside the vortex and a climatology obtained from data outside the vortex over the studied period. Clear sky conditions were determined from TOMS reflectivity data. For measurements outside the vortex, clear sky conditions were selected for reflectivity values lower than 7.5%, while for measurements inside the vortex, a relaxed threshold was determined from statistically similar UV values as a function of reflectivity. UV changes and ozone differences from the climatology were analyzed in the 40° S–50° S and 50° S–60° S latitude bands during the spring period (September to November). The largest UV increases and ozone decreases, reaching 200% and 65%, respectively, were found in the 50° S–60° S latitude band in September and October. The heterogeneous ozone loss during vortex occurrences was estimated using a chemical transport model. The largest impact of vortex occurrences was found in October with mean UV increase, total ozone decrease and accumulated ozone loss in the 350 K–650 K range of respectively 47%, 32% and 63%. The region close to South America is the most affected by the Antarctic ozone depletion due to the combined effect of large number of vortex occurrences, lower cloud cover and large ozone decrease. This region would be the most vulnerable in case of cloud cover decrease linked to climate change, due to more frequent occurrence of ozone poor air masses during austral spring.


2020 ◽  
Vol 12 (6) ◽  
pp. 920 ◽  
Author(s):  
Sabrina Gentile ◽  
Francesco Di Paola ◽  
Domenico Cimini ◽  
Donatello Gallucci ◽  
Edoardo Geraldi ◽  
...  

Solar power generation is highly fluctuating due to its dependence on atmospheric conditions. The integration of this variable resource into the energy supply system requires reliable predictions of the expected power production as a basis for management and operation strategies. This is one of the goals of the Solar Cloud project, funded by the Italian Ministry of Economic Development (MISE)—to provide detailed forecasts of solar irradiance variables to operators and organizations operating in the solar energy industry. The Institute of Methodologies for Environmental Analysis of the National Research Council (IMAA-CNR), participating to the project, implemented an operational chain that provides forecasts of all the solar irradiance variables at high temporal and horizontal resolution using the numerical weather prediction Advanced Research Weather Research and Forecasting (WRF-ARW) Solar version 3.8.1 released by the National Center for Atmospheric Research (NCAR) in August 2016. With the aim of improving the forecast of solar irradiance, the three-dimensional (3D-Var) data assimilation was tested to assimilate radiances from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) geostationary satellite into WRF Solar. To quantify the impact, the model output is compared against observational data. Hourly Global Horizontal Irradiance (GHI) is compared with ground-based observations from Regional Agency for the Protection of the Environment (ARPA) and with MSG Shortwave Solar Irradiance estimations, while WRF Solar cloud coverage is compared with Cloud Mask by MSG. A preliminary test has been performed in clear sky conditions to assess the capability of the model to reproduce the diurnal cycle of the solar irradiance. The statistical scores for clear sky conditions show a positive performance of the model with values comparable to the instrument uncertainty and a correlation of 0.995. For cloudy sky, the solar irradiance and the cloud cover are better simulated when the SEVIRI radiances are assimilated, especially in the short range of the simulation. For the cloud cover, the Mean Bias Error one hour after the assimilation time is reduced from 41.62 to 20.29 W/m2 when the assimilation is activated. Although only two case studies are considered here, the results indicate that the assimilation of SEVIRI radiance improves the performance of WRF Solar especially in the first 3 hour forecast.


2008 ◽  
Vol 8 (17) ◽  
pp. 5339-5352 ◽  
Author(s):  
A. F. Pazmiño ◽  
S. Godin-Beekmann ◽  
E. A. Luccini ◽  
R. D. Piacentini ◽  
E. J. Quel ◽  
...  

Abstract. The variability of total ozone and UV radiation from Total Ozone Mapping Spectrometer (TOMS) measurements is analyzed as a function of polar vortex occurrences over the southern subpolar regions during the 1997–2005 period. The analysis of vortex occurrences showed high interannual variability in the 40° S–60° S latitude band with a longitudinal asymmetry showing the largest frequencies over the 90° W–90° E region. The impact of vortex occurrences on UV radiation and ozone in clear sky conditions was determined from the comparison between the measurements inside the vortex and a climatology obtained from data outside the vortex over the studied period. Clear sky conditions were determined from TOMS reflectivity data. For measurements outside the vortex, clear sky conditions were selected for reflectivity values lower than 7.5%, while for measurements inside the vortex, a relaxed threshold was determined from statistically similar UV values as a function of reflectivity. UV changes and ozone differences from the climatology were analyzed in the 40° S–50° S and 50° S–60° S latitude bands during the spring period (September to November). The largest UV increases and ozone decreases, reaching ~200% and ~65%, respectively, were found in the 50° S–60° S latitude band in September and October. The heterogeneous ozone loss during vortex occurrences was estimated using a chemical transport model. The largest impact of vortex occurrences was found in October with mean UV increase, total ozone decrease and accumulated ozone loss in the 350–650 K range of, respectively, 47%, 30% and 57%. The region close to South America is the most affected by the Antarctic ozone depletion due to the combined effect of large number of vortex occurrences, lower cloud cover and large ozone decrease. This region would be the most vulnerable in case of cloud cover decrease, due to more frequent occurrence of ozone poor air masses during austral spring.


2021 ◽  
Vol 16 (3) ◽  
Author(s):  
Jeremy Losak ◽  
Joseph Sabel

Home field advantage is universally accepted across most major sports and levels of competition. However, exact causes of home field advantage have been difficult to disentangle. The COVID-19 pandemic offers a unique, natural experiment to isolate elements related to home field advantage since all 2020 regular season Major League Baseball games were played without fans. Results provide no statistically significant evidence of a difference in home field advantage between the 2019 and 2020 seasons, evidence that home crowd support is not a driver of home field advantage. There does appear to be a statistical advantage by the home team batting second in the inning. Travel fatigue seems to have no impact on home field advantage, and while home field advantage seems to increase throughout the 2020 season, we chalk that up to small sample noise. Despite lacking historical precedence, betting markets seemingly respond efficiently to the new home conditions. Keywords: home field advantage, market efficiency, baseball, ghost games


2009 ◽  
Vol 4 (3) ◽  
pp. 394-401 ◽  
Author(s):  
W. Christopher Winter ◽  
William R. Hammond ◽  
Noah H. Green ◽  
Zhiyong Zhang ◽  
Donald L. Bliwise

Purpose:The effect of travel on athletic performance has been investigated in previous studies. The purpose of this study was to investigate this effect on game outcome over 10 Major League Baseball (MLB) seasons.Methods:Using the convention that for every time zone crossed, synchronization requires 1 d, teams were assigned a daily number indicating the number of days away from circadian resynchronization. With these values, wins and losses for all games could be analyzed based on circadian values.Results:19,079 of the 24,121 games (79.1%) were played between teams at an equal circadian time. The remaining 5,042 games consisted of teams playing at different circadian times. The team with the circadian advantage won 2,620 games (52.0%, P = .005), a winning percentage that exceeded chance but was a smaller effect than home field advantage (53.7%, P < .0001). When teams held a 1-h circadian advantage, winning percentage was 51.7% (1,903–1,781). Winning percentage with a 2-h advantage was 51.8% (620–578) but increased to 60.6% (97–63) with a 3-h advantage (3-h advantage > 2-hadvantage = 1-h advantage, P = .036). Direction of advantage showed teams traveling from Western time zones to Eastern time zones were more likely to win (winning percentage = .530) than teams traveling from Eastern time zones to Western time zones (winning percentage = .509) with a winning odds 1.14 (P = .027).Conclusion:These results suggest that in the same way home field advantage influences likelihood of success, so too does the magnitude and direction of circadian advantage. Teams with greater circadian advantage were more likely to win.


2019 ◽  
Vol 76 (11) ◽  
pp. 3485-3504 ◽  
Author(s):  
Carsten Abraham ◽  
Adam H. Monahan

Abstract In a companion paper hidden Markov model (HMM) analyses have been conducted to classify the nocturnal stably stratified boundary layer (SBL) into weakly stable (wSBL) and very stable (vSBL) conditions at different tower sites on the basis of long-term Reynolds-averaged mean data. The resulting HMM regime sequences allow analysis of long-term (climatological) SBL regime statistics. In particular, statistical features of very persistent wSBL and vSBL nights, in which a single regime lasts for the entire night, are contrasted with those of nights with SBL regime transitions. The occurrence of very persistent nights is seasonally dependent and more likely in homogeneous surroundings than in regions with complex terrain. When transitions occur, their timing is not seasonally dependent, but transitions are enhanced close to sunset (for land-based sites). The regime event durations depict remarkably similar distributions across all stations with peaks in transition likelihood approximately 1–2 h after a preceding transition. At Cabauw in the Netherlands, very persistent wSBL and vSBL nights are usually accompanied by overcast conditions with strong geostrophic winds Ugeo or clear-sky conditions with weak Ugeo, respectively. In contrast, SBL regime transitions can neither be linked to magnitudes in Ugeo and cloud coverage nor to specific tendencies in Ugeo. However, regime transitions can be initiated by changes in low-level cloud cover.


2013 ◽  
Vol 5 (4) ◽  
pp. 359-366 ◽  
Author(s):  
Brandon Lee D. Koch ◽  
Anna K. Panorska

Abstract Major League Baseball is played from the beginning of April through the end of October each year, encompassing three of the four meteorological seasons: spring, summer, and fall. The 30 teams play in cities across the United States and Canada in many types of weather. This work studies the impact of temperature on a Major League Baseball game by examining the association between temperature and several Major League Baseball game statistics, including runs scored, batting average, slugging percentage, on-base percentage, home runs, walks, strikeouts, hit-batsmen, stolen bases, and errors. Data from 22 215 games, spanning the 2000–11 regular seasons, were studied. Temperature was categorized as “cold,” “average,” and “warm.” Analyses were performed on the following populations: all Major League Baseball games, games played in the National League, games played in the American League, and games played in 23 different stadiums that are currently being used by Major League Baseball teams. Home and away teams' performances were analyzed separately for each population of games. The results of this study show that runs scored, batting average, slugging percentage, on-base percentage, and home runs significantly increase while walks significantly decrease in warm weather compared to cold weather.


2013 ◽  
Vol 31 (5) ◽  
pp. 795-804 ◽  
Author(s):  
X. Xia

Abstract. This study aims to investigate the effect of total cloud cover (TCC) and sunshine duration (SSD) in the variation of diurnal temperature range (DTR) in China during 1954–2009. As expected, the inter-annual variation of DTR was mainly determined by TCC. Analysis of trends of 30-year moving windows of DTR and TCC time series showed that TCC changes could account for that of DTR in some cases. However, TCC decreased during 1954–2009, which did not support DTR reduction across China. DTRs under sky conditions such as clear, cloudy and overcast showed nearly the same decreasing rate that completely accounted for the overall DTR reduction. Nevertheless, correlation between SSD and DTR was weak and not significant under clear sky conditions in which aerosol direct radiative effect should be dominant. Furthermore, 30–60% of DTR reduction was associated with DTR decrease under overcast conditions in south China. This implies that aerosol direct radiative effect appears not to be one of the main factors determining long-term changes in DTR in China.


Sign in / Sign up

Export Citation Format

Share Document