Opportunities for Joint Water–Energy Management: Sensitivity of the 2010 Western U.S. Electricity Grid Operations to Climate Oscillations

2018 ◽  
Vol 99 (2) ◽  
pp. 299-312 ◽  
Author(s):  
N. Voisin ◽  
M. Kintner-Meyer ◽  
D. Wu ◽  
R. Skaggs ◽  
T. Fu ◽  
...  

Abstract The increasing interconnectedness of energy and water systems makes it important to understand how interannual variations in water availability—and climate oscillations—could potentially impact the electric grid operations. The authors assess the vulnerability of the current western U.S. grid to historical climate variability using multiple energy and water system models. A 55-yr-long natural water availability benchmark is combined with the 2010 level of water demand from an integrated assessment model to drive a large-scale water management model over the western United States. The regulated flow at hydropower and thermoelectric power plants is then translated into boundary conditions for electricity generation in a production cost model. This analysis focuses on assessing regional interdependencies and the impact of interannual changes in water availability on power system operations, including reliability, cost, and carbon emissions. Results for August grid operations—when stress on the grid is often highest—show a range of sensitivity in production cost (–8% to +11%) and carbon emissions (–7% to +11%), as well as a 1-in-10 chance that electricity demand will exceed estimated supply. The authors also show that operating costs are lower under neutral El Niño–Southern Oscillation (ENSO) conditions than under other ENSO phases; carbon emissions are highest under La Niña conditions, especially in California; and the risk of brownouts may be higher under neutral and negative ENSO conditions. These results help characterize the grid’s performance under historical climate variations, are useful for seasonal and multiyear planning of joint water–electricity management, and can be used to support impact, adaptation, and vulnerability analyses.

Author(s):  
Dmitry Yumashev ◽  
Chris Hope ◽  
Kevin Schaefer ◽  
Kathrin Riemann-Campe ◽  
Fernando Iglesias-Suarez ◽  
...  

Arctic feedbacks will accelerate climate change and could jeopardise mitigation efforts. The permafrost carbon feedback releases carbon to the atmosphere from thawing permafrost and the sea ice albedo feedback increases solar absorption in the Arctic Ocean. A constant positive albedo feedback and zero permafrost feedback have been used in nearly all climate policy studies to date, while observations and models show that the permafrost feedback is significant and that both feedbacks are nonlinear. Using novel dynamic emulators in the integrated assessment model PAGE-ICE, we investigate nonlinear interactions of the two feedbacks with the climate and economy under a range of climate scenarios consistent with the Paris Agreement. The permafrost feedback interacts with the land and ocean carbon uptake processes, and the albedo feedback evolves through a sequence of nonlinear transitions associated with the loss of Arctic sea ice in different months of the year. The US’s withdrawal from the current national pledges could increase the total discounted economic impact of the two Arctic feedbacks until 2300 by $25 trillion, reaching nearly $120 trillion, while meeting the 1.5 °C and 2 °C targets will reduce the impact by an order of magnitude.


2011 ◽  
Vol 101 (5) ◽  
pp. 1649-1675 ◽  
Author(s):  
Nicholas Z Muller ◽  
Robert Mendelsohn ◽  
William Nordhaus

This study presents a framework to include environmental externalities into a system of national accounts. The paper estimates the air pollution damages for each industry in the United States. An integrated-assessment model quantifies the marginal damages of air pollution emissions for the US which are multiplied times the quantity of emissions by industry to compute gross damages. Solid waste combustion, sewage treatment, stone quarrying, marinas, and oil and coal-fired power plants have air pollution damages larger than their value added. The largest industrial contributor to external costs is coal-fired electric generation, whose damages range from 0.8 to 5.6 times value added. (JEL E01, L94, Q53, Q56)


2014 ◽  
Vol 05 (02) ◽  
pp. 1450003 ◽  
Author(s):  
MARSHALL WISE ◽  
KATE CALVIN ◽  
PAGE KYLE ◽  
PATRICK LUCKOW ◽  
JAE EDMONDS

The release of the Global Change Assessment Model (GCAM) version 3.0 represents a major revision in the treatment of agriculture and land-use activities in a model of long-term, global human and physical Earth systems. GCAM 3.0 incorporates greater spatial and temporal resolution compared to GCAM 2.0. In this paper, we document the methods embodied in the new release, describe the motivation for the changes, compare GCAM 3.0 methods to those of other long-term, global agriculture-economy models and apply GCAM 3.0 to explore the impact of changes in agricultural crop yields on global land use and terrestrial carbon. In the absence of continued crop yield improvements throughout the century, not only are cumulative carbon emissions a major source of CO 2 emissions to the atmosphere, but bioenergy production remains trivial — land is needed for food. In contrast, the high crop yield improvement scenario cuts terrestrial carbon emissions dramatically and facilitates both food and energy production.


2021 ◽  
Vol 13 (23) ◽  
pp. 13049
Author(s):  
Songyan Ren ◽  
Peng Wang ◽  
Hancheng Dai ◽  
Daiqing Zhao ◽  
Toshihiko Masui

PM2.5 pollution-related diseases lead to additional medical expenses and the loss of working hours, thus affecting the macro-economy. To evaluate the health-related economic impacts of PM2.5, the Integrated Assessment Model of Climate, Economic, and Environment (ICEEH), combined with the Computable General Equilibrium (CGE) model, the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model, and a health impact assessment module was constructed. The impact of different air pollution control strategies was analyzed in Guangdong Province by establishing a Without Control (WOC) scenario, an Air Control (AIC) scenario, and a Blue Sky (BLK) scenario. The results show that in the WOC scenario for 2035, the death rate for Guangdong Province is 71,690 persons/year and the loss of working hours is 0.67 h/person/year. In the AIC and BLK scenarios compared with WOC for 2035, the loss of working hours is reduced by 29.8% and 34.3%, and premature deaths are reduced by 33.0% and 37.5%, respectively; GDP would increase by 0.05% and 0.11%, respectively, through strict pollution control policies. Furthermore, improved labor force quality induced by better air conditions would promote the added value in labor-intensive industries, such as agriculture (0.233%), other manufacturing (0.172%), textiles (0.181%), food (0.176%), railways transport (0.137%), and services (0.129%). The added value in the waste (−0.073%), nature gas (−0.076%), and crude oil sectors (−0.072%) would decrease because of the increased investment installment in PM2.5 treatment equipment.


2021 ◽  
Vol 3 ◽  
Author(s):  
Shreekar Pradhan ◽  
William M. Shobe ◽  
Jay Fuhrman ◽  
Haewon McJeon ◽  
Matthew Binsted ◽  
...  

We examine the effects of negative emission technologies availability on fossil fuel-based electricity generating assets under deep decarbonization trajectories. Our study focuses on potential premature retirements (stranding) and committed emissions of existing power plants globally and the effects of deploying direct air carbon capture and biomass-based carbon capture and sequestration technologies. We use the Global Change Analysis Model (GCAM), an integrated assessment model, to simulate the global supply of electricity under a climate mitigation scenario that limits global warming to 1.5–2°C temperature increase over the century. Our results show that the availability of direct air capture (DAC) technologies reduces the stranding of existing coal and gas based conventional power plants and delays any stranding further into the future. DAC deployment under the climate mitigation goal of limiting the end-of-century warming to 1.5–2°C would reduce the stranding of power generation from 250 to 350 GW peaking during 2035-2040 to 130-150 GW in years 2050-2060. With the availability of direct air capture and carbon storage technologies, the carbon budget to meet the climate goal of limiting end-of-century warming to 1.5–2°C would require abating 28–33% of 564 Gt CO2 -the total committed CO2 emissions from the existing power plants vs. a 46–57% reduction in the scenario without direct air capture and carbon storage technologies.


2013 ◽  
Vol 10 (10) ◽  
pp. 6323-6337 ◽  
Author(s):  
S. J. Smith ◽  
A. Rothwell

Abstract. We examine historical and future land-use emissions using a simple mechanistic carbon-cycle model with regional and ecosystem specific parameterizations. We use the latest gridded data for historical and future land-use changes, which includes estimates for the impact of forest harvesting and secondary forest regrowth. Our central estimate of net terrestrial land-use change emissions, exclusive of climate–carbon feedbacks, is 250 GtC over the last 300 yr. This estimate is most sensitive to assumptions for preindustrial forest and soil carbon densities. We also find that land-use change emissions estimates are sensitive to the treatment of crop and pasture lands. These sensitivities also translate into differences in future terrestrial uptake in the RCP (representative concentration pathway) 4.5 land-use scenario. The estimate of future uptake obtained here is smaller than the native values from the GCAM (Global Change Assessment Model) integrated assessment model result due to lower net reforestation in the RCP4.5 gridded land-use data product.


2020 ◽  
Author(s):  
Matthew Gidden ◽  
Zebedee Nicholls ◽  
Edward Byers ◽  
Gaurav Ganti ◽  
Jarmo Kikstra ◽  
...  

<p>Consistent and comparable climate assessments of scenarios are critical within the context of IPCC assessment reports. Given the number of scenarios assessed by WG3, the assessment “pipeline” must be almost completely automated. Here, we present the application of a new assessment pipeline which combines state-of-the-art components into a single workflow in order to derive climate outcomes for integrated assessment model (IAM) scenarios assessed by WG3 of the IPCC. A consistent analysis ensures that WG3’s conclusions about the socioeconomic transformations required to maintain a safe climate are based on the best understanding of our planetary boundaries from WG1. For example, if WG1 determines that climate sensitivity is higher than previously considered, then WG3 could incorporate this insight by e.g. considering much smaller remaining carbon budgets for any given temperature target.</p><p> </p><p>The scenario-climate assessment pipeline is comprised of three primary components. First, a consistent harmonization algorithm which maintains critical model characteristics between harmonized and unharmonized scenarios [1] is employed to harmonize emissions trajectories to a common and consistent historical dataset as used in CMIP6 [2]. Next, a scenario’s reported emissions trajectories are analyzed as to the completeness of its species and sectoral coverage. A consistent set of 14 emissions species are expected, aligning with published work within ScenarioMIP and CMIP6 (see ref [2], Table 2). Should any component of this full set of emissions trajectories be absent for a given scenario, an algorithm (e.g., generalised quantile walk [3]) is employed in order to “back-fill” missing species at the native model regional resolution. Finally, full emissions scenarios are analyzed by an Earth System Model emulator, e.g., MAGICC [4].</p><p> </p><p>In this presentation, we explore differences in climate assessments and estimated remaining carbon budgets across various components of the pipeline for available scenarios in the literature. We consider the impact of alternative choices, especially those made in prior assessments by the IPCC (AR5, SR15), including, for example, the historical emissions database used, the effect of harmonization and back-filling, as well as the version and setup of MAGICC used. </p><p> </p><p>References</p><p> </p><p>[1] Gidden, M.J., Fujimori, S., van den Berg, M., Klein, D., Smith, S.J., van Vuuren, D.P. and Riahi, K., 2018. A methodology and implementation of automated emissions harmonization for use in Integrated Assessment Models. Environmental Modelling & Software, 105, pp.187-200.</p><p> </p><p>[2] Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century, Geosci. Model Dev., 12, 1443-1475, https://doi.org/10.5194/gmd-12-1443-2019, 2019.</p><p> </p><p>[3] Teske, S. et al., Achieving the Paris Climate Agreement Goals. Springer, 2019.</p><p> </p><p>[4] Meinshausen, M., Raper, S.C. and Wigley, T.M., 2011. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6–Part 1: Model description and calibration. Atmospheric Chemistry and Physics, 11(4), pp.1417-1456.</p>


Resources ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 33 ◽  
Author(s):  
Antoine Boubault ◽  
Nadia Maïzi

Achieving a “carbon neutral” world by 2100 or earlier in a context of economic growth implies a drastic and profound transformation of the way energy is supplied and consumed in our societies. In this paper, we use life-cycle inventories of electricity-generating technologies and an integrated assessment model (TIMES Integrated Assessment Model) to project the global raw material requirements in two scenarios: a second shared socioeconomic pathway baseline, and a 2 °C scenario by 2100. Material usage reported in the life-cycle inventories is distributed into three phases, namely construction, operation, and decommissioning. Material supply dynamics and the impact of the 2 °C warming limit are quantified for three raw fossil fuels and forty-eight metallic and nonmetallic mineral resources. Depending on the time horizon, graphite, sand, sulfur, borates, aluminum, chromium, nickel, silver, gold, rare earth elements or their substitutes could face a sharp increase in usage as a result of a massive installation of low-carbon technologies. Ignoring nonfuel resource availability and value in deep decarbonation, circular economy, or decoupling scenarios can potentially generate misleading, contradictory, or unachievable climate policies.


2021 ◽  
Author(s):  
Leon Merfort ◽  
Nico Bauer ◽  
Florian Humpenöder ◽  
David Klein ◽  
Jessica Strefler ◽  
...  

Abstract We assess the impact of different land-use emission policies within a broader climate policy framework on bioenergy production and associated land-use carbon emissions. We use the global Integrated Assessment Model REMIND-MAgPIE integrating the energy and land-use sectors and derive alternative climate change mitigation scenarios over the 21st century. If CO2 emissions are regulated consistently across sectors, land-use change emissions of biofuels are limited to 12 kgCO2/GJ. Without land-use emission regulations applied, bioenergy-induced emissions increase substantially and the emission factor per energy unit raises to levels slightly below diesel combustion (64 kg CO2/GJ). Pricing these emissions on the level of bioenergy consumption diminishes bioenergy deployment and the associated CO2 emissions, while failing to reduce the average emission factor. Despite effective reduction of land-use emissions, undifferentiated penalization of bioenergy use substantially increases mitigation costs. If supply side policies comprehensively regulate direct and indirect emissions, bioenergy can be produced much more sustainably.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ryna Yiyun Cui ◽  
Nathan Hultman ◽  
Morgan R. Edwards ◽  
Linlang He ◽  
Arijit Sen ◽  
...  

Abstract A rapid transition away from unabated coal use is essential to fulfilling the Paris climate goals. However, many countries are actively building and operating coal power plants. Here we use plant-level data to specify alternative trajectories for coal technologies in an integrated assessment model. We then quantify cost-effective retirement pathways for global and country-level coal fleets to limit long-term temperature change. We present our results using a decision-relevant metric: the operational lifetime limit. Even if no new plants are built, the lifetimes of existing units are reduced to approximately 35 years in a well-below 2 °C scenario or 20 years in a 1.5 °C scenario. The risk of continued coal expansion, including the near-term growth permitted in some Nationally Determined Contributions (NDCs), is large. The lifetime limits for both 2 °C and 1.5 °C are reduced by 5 years if plants under construction come online and 10 years if all proposed projects are built.


Sign in / Sign up

Export Citation Format

Share Document